How Oxygen Binding Enhances Long‐Range Electron Transfer: Lessons From Reduction of Lytic Polysaccharide Monooxygenases by Cellobiose Dehydrogenase

2020 ◽  
Author(s):  
Zhanfeng Wang ◽  
Shishi Feng ◽  
Carme Rovira ◽  
Binju Wang
2018 ◽  
Author(s):  
Jennifer M. Bhatnagar ◽  
Grzegorz Sabat ◽  
Daniel Cullen

AbstractThe conifer needle endophyte,Phialocephala scopiformis, was cultivated in media containing groundPinus contortawood as sole carbon source. After five and seven days growth, concentrated extracellular fluids were subjected to LC-MS/MS analyses. A total of 590 proteins were identified of which 99 were assigned to glycoside hydrolase families within the Carbohydrate Active Enzyme (CAzyme) system. Multiple isozymes of exo-and endo-acting cellulases were among the most abundant proteins, and oxidative degradation of cellulose was supported by the presence of lytic polysaccharide monooxygenases, glucooligosaccharide oxidase and cellobiose dehydrogenase. Oxidoreductases were also plentiful and included GMC oxidoreductases, alcohol dehydrogenases, laccases, copper radical oxidases, tyrosinases and catalase. The expression and diversity of extracellular oxidoreductases indicates a capacity to metabolize alcohols and aromatic compounds.


2016 ◽  
Vol 25 (12) ◽  
pp. 2175-2186 ◽  
Author(s):  
Jennifer S. M. Loose ◽  
Zarah Forsberg ◽  
Daniel Kracher ◽  
Stefan Scheiblbrandner ◽  
Roland Ludwig ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lukas Rieder ◽  
Katharina Ebner ◽  
Anton Glieder ◽  
Morten Sørlie

Abstract Background Lytic polysaccharide monooxygenases (LPMOs) are attracting large attention due their ability to degrade recalcitrant polysaccharides in biomass conversion and to perform powerful redox chemistry. Results We have established a universal Pichia pastoris platform for the expression of fungal LPMOs using state-of-the-art recombination cloning and modern molecular biological tools to achieve high yields from shake-flask cultivation and simple tag-less single-step purification. Yields are very favorable with up to 42 mg per liter medium for four different LPMOs spanning three different families. Moreover, we report for the first time of a yeast-originating signal peptide from the dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 1 (OST1) form S. cerevisiae efficiently secreting and successfully processes the N-terminus of LPMOs yielding in fully functional enzymes. Conclusion The work demonstrates that the industrially most relevant expression host P. pastoris can be used to express fungal LPMOs from different families in high yields and inherent purity. The presented protocols are standardized and require little equipment with an additional advantage with short cultivation periods.


1988 ◽  
Vol 110 (17) ◽  
pp. 5753-5756 ◽  
Author(s):  
M. Faraggi ◽  
Michael H. Klapper
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document