aspartyl protease
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 24)

H-INDEX

38
(FIVE YEARS 2)

Plant Disease ◽  
2021 ◽  
Author(s):  
Yi Ming Guan ◽  
Ying Ying Ma ◽  
Lin Lin Zhang ◽  
Xiao Xi Pan ◽  
Ning Liu ◽  
...  

American ginseng (Panax quinquefolium) is a valuable medicinal plant that is commercially cultivated in China. In May 2020, Sclerotinia root rot of American ginseng was observed on 4-year-old plants in Fusong County in northeastern China, which is the most important part of the country for American ginseng cultivation. The pathogen only infected the tuberous ginseng roots, with sclerotia tightly attached to the root surface. Infected roots, which were brownish and had a watery soft rotted appearance (Fig. 1), eventually became hollow and filled with sclerotia. There were no significant changes to the aboveground plant parts during the initial infection stage, but as the disease progressed, the foliage became discolored and wilted because of the damaged roots. More than 31% of the plants in a 30-ha field were infected. Symptomatic roots were collected and sclerotia were removed from the diseased tissue, immersed in 1% NaClO for 1 min, rinsed three times with sterile water, and placed on acidified potato dextrose agar (PDA) in Petri dishes. After an incubation in darkness at 20 °C for 2–3 days, 21 suspected Sclerotinia isolates were obtained. Isolates JH1 and JH2 were randomly selected for identification. On PDA, colonies produced sparse, white, and cottony aerial mycelia (i.e., wool-like appearance), with septate, branched, and hyaline hyphae. Within 4 days of incubation, the PDA surface was covered with white hyphae. Small and white sclerotial primordia formed 3 days later and were irregularly distributed in the middle and along the edge of the Petri dish. After maturing, the hardened and black sclerotia had an irregular shape and size, ranging from 1.4 × 1.5 to 4.1 × 7.5 mm (n = 50). Most of the sclerotia developed separately, with approximately 15–25 per plate (Fig. 2). On the basis of their morphology, the isolates were initially identified as Sclerotinia sp. (Mordue and Holliday 1976; Kohn 1979). Using the JH1 and JH2 rDNA internal transcribed spacer (ITS) region (GenBank accession no. MZ031405 and MZ031406) and the aspartyl protease gene specific to S. sclerotiorum (MZ292709 and MZ292710) in GenBank as queries, BLAST searches revealed that the sequences were respectively 99%–100% similar to S. sclerotiorum sequences KF859933 and AF271387. The primer pairs for amplifying the ITS region and the aspartyl protease gene were respectively ITS4/ITS5 (White et al. 1990) and SSaspr F/SSaspr R (Abd-Elmagid et al. 2013). The pathogenicity of JH1 and JH2 was evaluated using healthy plants. The roots of 4-year-old ginseng plants were washed, wiped with 75% alcohol, and transferred to flower pots containing sterile sand and sorghum grain (10:1 v/v) infested with 10-day-old isolates. For both isolates, 12 plants were inoculated, with four plants per pot. Control plants were transferred to flower pots containing sorghum grain lacking fungus. The inoculated samples were incubated in a greenhouse (12 h photoperiod and 25 °C) for 25 days before they were examined. The test was repeated twice. The inoculated roots exhibited the same symptoms as those observed in the field, whereas the controls remained symptomless. The same fungus was reisolated from all infected roots and resequencing results confirmed its identity. To the best of our knowledge, this is the first report of S. sclerotiorum causing Sclerotinia root rot on American ginseng in China. Because this disease is detrimental to the production of American ginseng, effective management strategies will need to be developed.


2021 ◽  
Vol 18 ◽  
Author(s):  
Shivani Loomba ◽  
Divya Utreja ◽  
Komalpreet Kaur ◽  
Jaspal Kaur ◽  
Shivali Sharma ◽  
...  

: Schiff bases of isatin were synthesized by reacting isatin with substituted aromatic amines and were characterized by UV-Visible, 1HNMR, 13CNMR, IR, and microanalytical data. All the synthesized isatin Schiff bases were screened in vitro against wheat pathogenic fungi Bipolaris sorokiniana, Alternaria triticina using spore inhibition technique and brinjal parasite- Meloidogyne incognita by egg hatch inhibition and J2 mortality. The in vitro study and docking simulation studies revealed that the 3-(2,4,5-trichlorophenylimino)indolin-2-one 6f and 3-(2,4-dinitrophenylimino)indolin-2-one 6c substituted with tri-halogen and dinitro electron-withdrawing groups were found to be promising antipathogenic candidates. The possible binding interactions of tested compounds with Aspartyl protease and Acetylcholine binding proteins were analyzed through molecular docking.


Author(s):  
Prem Prakash Sharma ◽  
Sumit Kumar ◽  
Kumar Kaushik ◽  
Archana Singh ◽  
Indrakant K. Singh ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 272
Author(s):  
Masahiro Nagahama ◽  
Keiko Kobayashi ◽  
Sadayuki Ochi ◽  
Masaya Takehara

Clostridium botulinum C2 toxin is a clostridial binary toxin consisting of actin ADP-ribosyltransferase (C2I) and C2II binding components. Activated C2II (C2IIa) binds to cellular receptors and forms oligomer in membrane rafts. C2IIa oligomer assembles with C2I and contributes to the transport of C2I into the cytoplasm of host cells. C2IIa induces Ca2+-induced lysosomal exocytosis, extracellular release of the acid sphingomyelinase (ASMase), and membrane invagination and endocytosis through generating ceramides in the membrane by ASMase. Here, we reveal that C2 toxin requires the lysosomal enzyme cathepsin B (CTSB) during endocytosis. Lysosomes are a rich source of proteases, containing cysteine protease CTSB and cathepsin L (CTSL), and aspartyl protease cathepsin D (CTSD). Cysteine protease inhibitor E64 blocked C2 toxin-induced cell rounding, but aspartyl protease inhibitor pepstatin-A did not. E64 inhibited the C2IIa-promoted extracellular ASMase activity, indicating that the protease contributes to the activation of ASMase. C2IIa induced the extracellular release of CTSB and CTSL, but not CTSD. CTSB knockdown by siRNA suppressed C2 toxin-caused cytotoxicity, but not siCTSL. These findings demonstrate that CTSB is important for effective cellular entry of C2 toxin into cells through increasing ASMase activity.


2021 ◽  
Vol 17 (2) ◽  
pp. e1009355
Author(s):  
Anamika Battu ◽  
Rajaram Purushotham ◽  
Partha Dey ◽  
S. Surya Vamshi ◽  
Rupinder Kaur

A family of eleven glycosylphosphatidylinositol-anchored aspartyl proteases, commonly referred to as CgYapsins, regulate a myriad of cellular processes in the pathogenic yeast Candida glabrata, but their protein targets are largely unknown. Here, using the immunoprecipitation-mass spectrometry approach, we identify the flavodoxin-like protein (Fld-LP), CgPst2, to be an interactor of one of the aspartyl protease CgYps1. We also report the presence of four Fld-LPs in C. glabrata, which are required for survival in kidneys in the murine model of systemic candidiasis. We further demonstrated that of four Fld-LPs, CgPst2 was solely required for menadione detoxification. CgPst2 was found to form homo-oligomers, and contribute to cellular NADH:quinone oxidoreductase activity. CgYps1 cleaved CgPst2 at the C-terminus, and this cleavage was pivotal to oligomerization, activity and function of CgPst2. The arginine-174 residue in CgPst2 was essential for CgYps1-mediated cleavage, with alanine substitution of the arginine-174 residue also leading to elevated activity and oligomerization of CgPst2. Finally, we demonstrate that menadione treatment led to increased CgPst2 and CgYps1 protein levels, diminished CgYps1-CgPst2 interaction, and enhanced CgPst2 cleavage and activity, thereby implicating CgYps1 in activating CgPst2. Altogether, our findings of proteolytic cleavage as a key regulatory determinant of CgPst2, which belongs to the family of highly conserved, electron-carrier flavodoxin-fold-containing proteins, constituting cellular oxidative stress defense system in diverse organisms, unveil a hidden regulatory layer of environmental stress response mechanisms.


2021 ◽  
Vol 134 ◽  
pp. 1-11
Author(s):  
Jia Xu ◽  
Wen Wen Yue ◽  
Yang Xiu Yue Xu ◽  
Hui Nan Hao ◽  
Ruo Dan Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document