panax quinquefolium
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 34)

H-INDEX

33
(FIVE YEARS 5)

HortScience ◽  
2022 ◽  
Vol 57 (1) ◽  
pp. 112-117
Author(s):  
Zhenghai Zhang ◽  
Hai Sun ◽  
Cai Shao ◽  
Huixia Lei ◽  
Jiaqi Qian ◽  
...  

Calcium (Ca) is necessary for plant growth and stress resistance, which are essential for the successful cultivation of Panax quinquefolium L. (American ginseng). However, information about the physiology of Ca nutrition in this species is limited. Therefore, the objective of this study was to determine the effect of Ca on the growth and physiological performance of American ginseng. Two-year-old American ginseng plants were supplemented with the following Ca concentrations [Ca2+] in a hydroponic system: 0, 160.17, 320.34, 640.68, and 961.02 mg⋅L−1. Measurements included growth biomass accumulation, chlorophyll (Chl) content and fluorescence, photosynthetic parameters, antioxidant enzyme activity, root activity, and malondialdehyde content. Biomass, stem height, leaf area, maximum photochemical efficiency, and superoxide dismutase activity peaked at [Ca2+] of 640.68 mg⋅L−1. Actual photochemical efficiency, minimum saturating irradiance, photosynthetic rate, catalase and peroxidase activities, and root activity reached their maximum at [Ca2+] of 320.34 mg⋅L−1. Stem diameter and regulated thermal energy dissipation increased with [Ca2+]. The sum of nonregulated heat dissipation and fluorescence emission and malondialdehyde content decreased to a minimum at [Ca2+] of 320.34 mg⋅L−1. The Chl content reached a maximum at [Ca2+] of 160.17 mg⋅L−1, but the Chl a/b ratio increased with [Ca2+]; the actual photochemical efficiency and photosynthetic rate reached their maximum level at Chl a/b ratios of 2.04 and [Ca2+] of 320.34 mg⋅L−1. Therefore, the optimal [Ca2+] for American ginseng growth was 320.34 mg⋅L−1. Furthermore, an appropriate increase [Ca2+] in the growth medium may improve biomass accumulation, light energy utilization efficiency, and stress resistance in American ginseng.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yi Ming Guan ◽  
Ying Ying Ma ◽  
Lin Lin Zhang ◽  
Xiao Xi Pan ◽  
Ning Liu ◽  
...  

American ginseng (Panax quinquefolium) is a valuable medicinal plant that is commercially cultivated in China. In May 2020, Sclerotinia root rot of American ginseng was observed on 4-year-old plants in Fusong County in northeastern China, which is the most important part of the country for American ginseng cultivation. The pathogen only infected the tuberous ginseng roots, with sclerotia tightly attached to the root surface. Infected roots, which were brownish and had a watery soft rotted appearance (Fig. 1), eventually became hollow and filled with sclerotia. There were no significant changes to the aboveground plant parts during the initial infection stage, but as the disease progressed, the foliage became discolored and wilted because of the damaged roots. More than 31% of the plants in a 30-ha field were infected. Symptomatic roots were collected and sclerotia were removed from the diseased tissue, immersed in 1% NaClO for 1 min, rinsed three times with sterile water, and placed on acidified potato dextrose agar (PDA) in Petri dishes. After an incubation in darkness at 20 °C for 2–3 days, 21 suspected Sclerotinia isolates were obtained. Isolates JH1 and JH2 were randomly selected for identification. On PDA, colonies produced sparse, white, and cottony aerial mycelia (i.e., wool-like appearance), with septate, branched, and hyaline hyphae. Within 4 days of incubation, the PDA surface was covered with white hyphae. Small and white sclerotial primordia formed 3 days later and were irregularly distributed in the middle and along the edge of the Petri dish. After maturing, the hardened and black sclerotia had an irregular shape and size, ranging from 1.4 × 1.5 to 4.1 × 7.5 mm (n = 50). Most of the sclerotia developed separately, with approximately 15–25 per plate (Fig. 2). On the basis of their morphology, the isolates were initially identified as Sclerotinia sp. (Mordue and Holliday 1976; Kohn 1979). Using the JH1 and JH2 rDNA internal transcribed spacer (ITS) region (GenBank accession no. MZ031405 and MZ031406) and the aspartyl protease gene specific to S. sclerotiorum (MZ292709 and MZ292710) in GenBank as queries, BLAST searches revealed that the sequences were respectively 99%–100% similar to S. sclerotiorum sequences KF859933 and AF271387. The primer pairs for amplifying the ITS region and the aspartyl protease gene were respectively ITS4/ITS5 (White et al. 1990) and SSaspr F/SSaspr R (Abd-Elmagid et al. 2013). The pathogenicity of JH1 and JH2 was evaluated using healthy plants. The roots of 4-year-old ginseng plants were washed, wiped with 75% alcohol, and transferred to flower pots containing sterile sand and sorghum grain (10:1 v/v) infested with 10-day-old isolates. For both isolates, 12 plants were inoculated, with four plants per pot. Control plants were transferred to flower pots containing sorghum grain lacking fungus. The inoculated samples were incubated in a greenhouse (12 h photoperiod and 25 °C) for 25 days before they were examined. The test was repeated twice. The inoculated roots exhibited the same symptoms as those observed in the field, whereas the controls remained symptomless. The same fungus was reisolated from all infected roots and resequencing results confirmed its identity. To the best of our knowledge, this is the first report of S. sclerotiorum causing Sclerotinia root rot on American ginseng in China. Because this disease is detrimental to the production of American ginseng, effective management strategies will need to be developed.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4997
Author(s):  
Hongyu Qi ◽  
Zepeng Zhang ◽  
Jiaqi Liu ◽  
Zhaoqiang Chen ◽  
Qingxia Huang ◽  
...  

Panax spp. (Araliaceae family) are widely used medicinal plants and they mainly include Panax ginseng C.A. Meyer, Panax quinquefolium L. (American ginseng), and Panax notoginseng (notoginseng). Polysaccharides are the main active ingredients in these plants and have demonstrated diverse pharmacological functions, but comparisons of isolation methods, structural features, and bioactivities of these polysaccharides have not yet been reported. This review summarizes recent advances associated with 112 polysaccharides from ginseng, 25 polysaccharides from American ginseng, and 36 polysaccharides from notoginseng and it compares the differences in extraction, purification, structural features, and bioactivities. Most studies focus on ginseng polysaccharides and comparisons are typically made with the polysaccharides from American ginseng and notoginseng. For the extraction, purification, and structural analysis, the processes are similar for the polysaccharides from the three Panax species. Previous studies determined that 55 polysaccharides from ginseng, 18 polysaccharides from American ginseng, and 9 polysaccharides from notoginseng exhibited anti-tumor activity, immunoregulatory effects, anti-oxidant activity, and other pharmacological functions, which are mediated by multiple signaling pathways, including mitogen-activated protein kinase, nuclear factor kappa B, or redox balance pathways. This review can provide new insights into the similarities and differences among the polysaccharides from the three Panax species, which can facilitate and guide further studies to explore the medicinal properties of the Araliaceae family used in traditional Chinese medicine.


2021 ◽  
Author(s):  
xin-yuan fan ◽  
He-tong Hui ◽  
Tian-qi Wang ◽  
Ming-hui Wang ◽  
Mo-Yi Liu ◽  
...  

Abstract Background: The roots of Panax species are widely used in the East because of their high medicinal and economic value. They are similar in plant morphology and chemical composition, but have quite differences in medicinal properties and efficacy, therefore, genetic diversity and variety identification of Panax species is particularly important. Methods: We screened 7 Simple Sequence Repeat (SSR) markers from expressed sequence tags (ESTs) database of Panax species in NCBI. Using these markers test SSR polymorphism in Panax species. Results: Seven SSR markers could successfully identify Panax ginseng, Panax quinquefolium, Panax notoginseng, and their commercial products. Among three ginseng varieties, garden ginseng, forest ginseng, and wild ginseng, the polymorphism of EST-SSR markers decreased gradually, which may be related to age and environment. Two pairs of EST-SSR primers can specifically identify three ginseng cultivars. The phylogenetic relationships analysis showed that Panax ginseng and Panax quinquefolium were closer than Panax notoginseng. Compared with wild ginseng, the relationship between the garden ginseng and the forest ginseng was closer. Conclusion: SSR molecular markers have high repeatability and can be used as reliable molecular markers for genetic diversity and variety identification of Panax species.


2021 ◽  
Vol 181 ◽  
pp. 221-231
Author(s):  
Kazi Farida Akhter ◽  
Md Abdul Mumin ◽  
Edmund M.K. Lui ◽  
Paul A. Charpentier

Plant Disease ◽  
2021 ◽  
Author(s):  
Yi Ming Guan ◽  
Lin Lin Zhang ◽  
Ying Ying Ma ◽  
Yue Zhang ◽  
Ya Yu Zhang

American ginseng (Panax quinquefolium) is a medicinal plant that is commercially cultivated in China. Anthracnose is a devastating disease of American ginseng, with annual production losses exceeding 20%. In July 2019, anthracnose of American ginseng was observed on 3-year-old plants in Fusong County, Jilin Province, China, the most important region of American ginseng. Round or irregular-shaped, brown, sunken and necrotic lesions (5 to 11 mm in diameter), occasionally with a concentric ring or surrounded by brown halos, were detected on leaves (Fig. 1). Multiple lesions gradually coalesced, eventually causing yellowing and wilting. More than 36% of plants in a 30-ha field were infected. Symptomatic leaves (n=16) were collected and the diseased tissue was cut into small pieces, immersed in 1% NaOCl for 2 min, rinsed three times with sterile water, and placed on acidified potato dextrose agar (PDA) in Petri dishes. After incubation in darkness at 25°C for 4 days, 15 suspected Colletotrichum single-spore isolates purified in water agar were obtained. The isolate XTJ2 was randomly selected for identification. On PDA, colonies were white to gray, occasionally mixed with gray-black strips, and the reverse was similar to the surface. Colonies on nutrient-poor agar (SNA) were flat, thin, floccose, with an entire margin, whitish to pale gray with the same colors on the reverse. The conidia were hyaline, smooth-walled, straight with a rounded base and apex, ranging from 11.1 to 21.2 × 4.0 to 5.5 μm (n=100), with length/width =3.5. Conidia were initially aseptate, but became septate with age. Setae were dark brown with a slightly acute tip, 2 to 3-septa, and 31.5 to 81.6 μm long. Appressoria were rarely observed, brown, smooth-walled, oval, bullet-shaped or irregular. Chlamydospores were not observed. The isolate was initially identified as Colletotrichum sp. (Damm et al. 2019). Initial BLAST searches of XTJ2 sequences of the rDNA internal transcribed spacer region (GenBank accession no. MW048745), a partial glyceraldehyde-3-phosphate dehydrogenase (MW053381), chitin synthase 1 (MW053382), histone H3 (MW053383), actin (MW053384) and beta-tubulin (MW053385) in GenBank showed that the sequences were respectively 100% similar to Colletotrichum sojae sequences: NR_158358, MG600810, MG600860, MG600899, MG600954 and MG601016 (Carbone and Kohn 1999; Crous et al. 2004;Guerber et al. 2003). The identity of XTJ2 was confirmed by constructing a phylogenetic tree combining all loci, which grouped the isolate and the type strain of C. sojae into one clade (Fig. 2). The sequences of all isolates were genetically identical to the XTJ2 sequences. For pathogenicity tests, 15 healthy 3-year-old plants grown in five pots were spray-inoculated with the XTJ2 conidial suspension (1×105 spores/mL), and the same number of plants were sprayed with water as the control. This experiment was repeated twice. Plants were kept in a greenhouse (28°C, natural light, and 85% relative humidity) under clear plastic bags. After 10 days, inoculated leaves exhibited symptoms that were similar to those observed in the field, whereas the controls were symptomless. The same fungus was recovered and sequenced, and its identity was confirmed by a phylogenetic analysis. This is the first report of C. sojae causing anthracnose of American ginseng in China, being a potential threat to the production of this culture. More studies on the epidemiology of this disease are needed to improve disease management.


2021 ◽  
Vol 12 ◽  
Author(s):  
Feiya Zhou ◽  
Xian Zhang ◽  
Liangfu Jiang ◽  
Shi Li ◽  
Yiheng Chen ◽  
...  

Random-pattern skin flap is widely used in tissue reconstruction. However, necrosis occurring in the distal part of the flap limits its clinical application to some extent. Activation of autophagy has been considered as an effective approach to enhance the survival of skin flaps. Pseudoginsenoside F11 (PF11), an ocotillol-type saponin, is an important component of Panax quinquefolium which has been shown to confer protection against cerebral ischemia and alleviate oxidative stress. However, it is currently unknown whether PF11 induces autophagy to improve the survival of skin flaps. In this study, we investigated the effects of PF11 on blood flow and tissue edema. The results of histological examination and western blotting showed that PF11 enhanced angiogenesis, alleviated apoptosis and oxidative stress, thereby improving the survival of the flap. Further experiments showed that PF11 promoted nuclear translocation of TFEB and by regulating the phosphorylation of AMPK. In summary, this study demonstrates that PF11 activates autophagy through the AMPK-TFEB signal pathway in skin flaps and it could be a promising strategy for enhancing flap viability.


Sign in / Sign up

Export Citation Format

Share Document