intensity discrimination
Recently Published Documents


TOTAL DOCUMENTS

353
(FIVE YEARS 7)

H-INDEX

42
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuping Sun ◽  
Michelle R. Kapolowicz ◽  
Matthew Richardson ◽  
Raju Metherate ◽  
Fan-Gang Zeng

AbstractElectrophysiological studies show that nicotine enhances neural responses to characteristic frequency stimuli. Previous behavioral studies partially corroborate these findings in young adults, showing that nicotine selectively enhances auditory processing in difficult listening conditions. The present work extended previous work to include both young and older adults and assessed the nicotine effect on sound frequency and intensity discrimination. Hypotheses were that nicotine improves auditory performance and that the degree of improvement is inversely proportional to baseline performance. Young (19–23 years old) normal-hearing nonsmokers and elderly (61–80) nonsmokers with normal hearing between 500 and 2000 Hz received nicotine gum (6 mg) or placebo gum in a single-blind, randomized crossover design. Participants performed three experiments (frequency discrimination, frequency modulation identification, and intensity discrimination) before and after treatment. The perceptual differences were analyzed between pre- and post-treatment, as well as between post-treatment nicotine and placebo conditions as a function of pre-treatment baseline performance. Compared to pre-treatment performance, nicotine significantly improved frequency discrimination. Compared to placebo, nicotine significantly improved performance for intensity discrimination, and the improvement was more pronounced in the elderly with lower baseline performance. Nicotine had no effect on frequency modulation identification. Nicotine effects are task-dependent, reflecting possible interplays of subjects, tasks and neural mechanisms.


2021 ◽  
Author(s):  
Shuping Sun ◽  
Michelle Kapolowicz ◽  
Matthew Richardson ◽  
Raju Metherate ◽  
Fan-Gang Zeng

Abstract Rationale Electrophysiological studies show that nicotine enhances neural responses to characteristic frequency stimuli. Previous behavioral studies partially corroborate these findings in young adults, showing that nicotine selectively enhances auditory processing in difficult listening conditions. The present work extended previous work to include both young and older adults and assessed the nicotine effect on sound frequency and intensity discrimination. Objectives Hypotheses were that nicotine improves auditory performance and that the degree of improvement is inversely proportional to baseline performance. Methods Young (19–23 years old) normal-hearing nonsmokers and elderly (61–80) nonsmokers with normal hearing up to at least 2 kHz received nicotine gum (6 mg) or placebo gum in a single-blind, randomized crossover design. Participants performed three experiments (frequency discrimination, frequency modulation identification, and intensity discrimination) before and after treatment. The perceptual differences were analyzed between post-treatment nicotine and placebo conditions as a function of pre-treatment baseline performance. Results Nicotine significantly improved performance for intensity discrimination, and improvement was more pronounced in the elderly with lower baseline performance. Nicotine had no overall effect on the two frequency related tasks. Conclusions Nicotine effects are task-dependent, enhancing intensity discrimination but not frequency performance.


2020 ◽  
Vol 63 (4) ◽  
pp. 1270-1281
Author(s):  
Leah Fostick ◽  
Riki Taitelbaum-Swead ◽  
Shulamith Kreitler ◽  
Shelly Zokraut ◽  
Miriam Billig

Purpose Difficulty in understanding spoken speech is a common complaint among aging adults, even when hearing impairment is absent. Correlational studies point to a relationship between age, auditory temporal processing (ATP), and speech perception but cannot demonstrate causality unlike training studies. In the current study, we test (a) the causal relationship between a spatial–temporal ATP task (temporal order judgment [TOJ]) and speech perception among aging adults using a training design and (b) whether improvement in aging adult speech perception is accompanied by improved self-efficacy. Method Eighty-two participants aged 60–83 years were randomly assigned to a group receiving (a) ATP training (TOJ) over 14 days, (b) non-ATP training (intensity discrimination) over 14 days, or (c) no training. Results The data showed that TOJ training elicited improvement in all speech perception tests, which was accompanied by increased self-efficacy. Neither improvement in speech perception nor self-efficacy was evident following non-ATP training or no training. Conclusions There was no generalization of the improvement resulting from TOJ training to intensity discrimination or generalization of improvement resulting from intensity discrimination training to speech perception. These findings imply that the effect of TOJ training on speech perception is specific and such improvement is not simply the product of generally improved auditory perception. It provides support for the idea that temporal properties of speech are indeed crucial for speech perception. Clinically, the findings suggest that aging adults can be trained to improve their speech perception, specifically through computer-based auditory training, and this may improve perceived self-efficacy.


2019 ◽  
Vol 145 (3) ◽  
pp. 1719-1719
Author(s):  
Christopher Conroy ◽  
Christine Mason ◽  
Gerald Kidd

2017 ◽  
Vol 41 (11) ◽  
pp. 1059-1070 ◽  
Author(s):  
H. Christiaan Stronks ◽  
Janine Walker ◽  
Daniel J. Parker ◽  
Nick Barnes

Sign in / Sign up

Export Citation Format

Share Document