pet detectors
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 44)

H-INDEX

26
(FIVE YEARS 3)

Author(s):  
Charlotte Thyssen ◽  
Karel Deprez ◽  
Pieter Mollet ◽  
Roel Van Holen ◽  
Stefaan Vandenberghe

Abstract The vast majority of PET detectors in the field today is based on pixelated scintillators. Yet, the resolution of this type of detector is limited by the pixel size. To overcome this limitation one can use monolithic detectors. However, this detector architecture demands specific and high-speed detector readout of the photodetector array. A commonly used approach is to integrate the current pulses generated by every pixel but such circuitry quickly becomes bulky, power consuming and expensive. The objective of this work is to investigate a novel readout and event positioning scheme for monolithic PET detectors, based on Time-over-Threshold (ToT). In this case, we measure the time that the pulse is above a certain threshold through a comparator. The pulse widths are used for event positioning using a mean nearest neighbour approach (mNNToT). For energy determination one integrating multiplexed channel is foreseen. We evaluate the positioning accuracy and uniformity of such a ToT detector by means of Monte Carlo simulations. The impact of the threshold value is investigated and the results are compared to a detector using mean nearest neighbour with pulse-integration (mNNint), which has already proven to allow sub-mm resolution. We show minimal degradation in spatial resolution and bias performance compared to mNNint. The highest threshold results in the worst resolution performance but degradation remains below 0.1 mm. Bias is largely constant over different thresholds for mNNToT and close to identical to mNNint. Furthermore we show that Time-over-Threshold performs well in terms of detector uniformity and that scattered photons can be positioned inside the crystal with high accuracy. We conclude from this work that ToT is a valuable alternative to pulse-integration for monolithic PET detectors. This novel approach has an impact on PET detector development since it has the advantage of lower power consumption, compactness and inherent amplitude-to-time conversion.


2021 ◽  
Vol 7 (10) ◽  
pp. 199
Author(s):  
Juan Manuel Álvarez-Gómez ◽  
Joaquín Santos-Blasco ◽  
Laura Moliner Martínez ◽  
María José Rodríguez-Álvarez

Improvements in energy resolution of modern positron emission tomography (PET) detectors have created opportunities to implement energy-based scatter correction algorithms. Here, we use the energy information of auxiliary windows to estimate the scatter component. Our method is directly implemented in an iterative reconstruction algorithm, generating a scatter-corrected image without the need for sinograms. The purpose was to implement a fast energy-based scatter correction method on list-mode PET data, when it was not possible to use an attenuation map as a practical approach for the scatter degradation. The proposed method was evaluated using Monte Carlo simulations of various digital phantoms. It accurately estimated the scatter fraction distribution, and improved the image contrast in the simulated studied cases. We conclude that the proposed scatter correction method could effectively correct the scattered events, including multiple scatters and those originated in sources outside the field of view.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4681
Author(s):  
Siwei Xie ◽  
Zhiliang Zhu ◽  
Xi Zhang ◽  
Qiangqiang Xie ◽  
Hongsen Yu ◽  
...  

As a commonly used solution, the multi-ended readout can measure the depth-of-interaction (DOI) for positron emission tomography (PET) detectors. In the present study, the effects of the multi-ended readout design were investigated using the leading-edge discriminator (LED) triggers on the timing performance of time-of-flight (TOF) PET detectors. At the very first, the photon transmission model of the four detectors, namely, single-ended readout, dual-ended readout, side dual-ended readout, and triple-ended readout, was established in Tracepro. The optical simulation revealed that the light output of the multi-ended readout was higher. Meanwhile, the readout circuit could be triggered earlier. Especially, in the triple-ended readout, the light output at 0.5 ns was observed to be nearly twice that of the single-ended readout after the first scintillating photon was generated. Subsequently, a reference detector was applied to test the multi-ended readout detectors that were constructed from a 6 × 6 × 25 mm3 LYSO crystal. Each module is composed of a crystal coupled with multiple SiPMs. Accordingly, its timing performance was improved by approximately 10% after the compensation of fourth-order polynomial fitting. Finally, the compensated full-width-at-half-maximum (FWHM) coincidence timing resolutions (CTR) of the dual-ended readout, side dual-ended readout, and triple-ended readout were 216.9 ps, 231.0 ps, and 203.6 ps, respectively.


2021 ◽  
Author(s):  
M. Amin Choghadi ◽  
Sheng C. Huang ◽  
Kenji Shimazoe ◽  
Hiroyuki Takahashi

2021 ◽  
Author(s):  
Louise Fanchon ◽  
Brad Beattie ◽  
Keith Pentlow ◽  
Steven Larson ◽  
John Laurence Humm

Abstract Purpose To determine the accuracy of quantitative 124I PET imaging in the presence of therapeutic levels of 131I.Material and Methods Multiple PET images were acquired using a NEMA IEC phantom with spheres containing 0.4 MBq/cc of 124I and increasing amount of 131I activity in the phantom background (0 to 3.76 GBq). Acquisitions were performed on a GE Discovery 710 PET/CT scanner. At each 131I activity level two scans were acquired, one with the phantom at the center of the field of view (FOV) and one 11 cm off-center. Images were reconstructed with an ordered subset expectation maximization (OSEM) algorithm using between 1 and 25 iterations of 16 subsets. Results were evaluated visually and by comparing the 124I activity relative to the baseline PET performed in the absence of 131I.Results The presence of 131I within the PET FOV added to the random coincidence rate, to dead-time and to pile-up within the PET detectors. Using our standard clinical reconstruction parameters, the image quality and quantitative accuracy suffered at 131I background activities above 1.4 GBq. However, increasing the number of iterations resulted in dramatic improvements in image quality and quantitative accuracy. Projection space measurements suggest that the dead time corrections implemented on the scanner perform well even at the highest singles count rate tested (52 Mcps).Conclusion This study shows that 124I quantitative PET is feasible in the presence of large amounts of 131I on a GE D710. The high random coincidence fraction slows the reconstruction convergence rate, therefore iterations equivalent to at least 8x16 are recommended.


Sign in / Sign up

Export Citation Format

Share Document