scatter correction
Recently Published Documents


TOTAL DOCUMENTS

813
(FIVE YEARS 113)

H-INDEX

42
(FIVE YEARS 5)

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1809
Author(s):  
Chunxu Li ◽  
Jinghan Zhao ◽  
Yaoxiang Li ◽  
Yongbin Meng ◽  
Zheyu Zhang

In order to explore the ever-changing law of soil organic matter (SOM) content in the forest of the Greater Khingan Mountains, a prediction model of the SOM content with a high accuracy and stability has been developed based on visible near-infrared (VIS-NIR) technology and multiple regression analysis. A total of 105 soil samples were collected from Cuifeng forest farm in Jagdaqi City, Greater Khingan Mountains region, Heilongjiang Province, China. Five classical preprocessing algorithms, including Savitzky−Golay convolution smoothing (S-G smoothing), standard normal variate transformation (SNV), multiplicative scatter correction (MSC), first derivative, second derivative, and the combinations of the above five methods were applied to the raw spectra. Wavelengths were optimized with five methods of competitive adaptive reweighted sampling (CARS), successive projections algorithm (SPA), uninformative variable elimination (UVE), synergy interval partial least square (SiPLS), and their combinations, and PLS models were developed accordingly. The results showed that when S-G smoothing is combined with SNV or MSC, both preprocessing strategies can improve the performance of the model. The prediction accuracy of SiPLS-PLS model and SiPLS-UVE-PLS model for the SOM content is higher than for other models, withan Rc2 of 0.9663 and 0.9221, RMSEC of 0.0645 and 0.0981, Rv2 of 0.9408 and 0.9270, and RMSEV of 0.0615 and 0.0683, respectively. The pretreatment strategies and characteristic variable selection methods used in this study could significantly improve the model performance and predicting efficiency.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8051
Author(s):  
Chunwang Dong ◽  
Chongshan Yang ◽  
Zhongyuan Liu ◽  
Rentian Zhang ◽  
Peng Yan ◽  
...  

Catechin is a major reactive substance involved in black tea fermentation. It has a determinant effect on the final quality and taste of made teas. In this study, we applied hyperspectral technology with the chemometrics method and used different pretreatment and variable filtering algorithms to reduce noise interference. After reduction of the spectral data dimensions by principal component analysis (PCA), an optimal prediction model for catechin content was constructed, followed by visual analysis of catechin content when fermenting leaves for different periods of time. The results showed that zero mean normalization (Z-score), multiplicative scatter correction (MSC), and standard normal variate (SNV) can effectively improve model accuracy; while the shuffled frog leaping algorithm (SFLA), the variable combination population analysis genetic algorithm (VCPA-GA), and variable combination population analysis iteratively retaining informative variables (VCPA-IRIV) can significantly reduce spectral data and enhance the calculation speed of the model. We found that nonlinear models performed better than linear ones. The prediction accuracy for the total amount of catechins and for epicatechin gallate (ECG) of the extreme learning machine (ELM), based on optimal variables, reached 0.989 and 0.994, respectively, and the prediction accuracy for EGC, C, EC, and EGCG of the content support vector regression (SVR) models reached 0.972, 0.993, 0.990, and 0.994, respectively. The optimal model offers accurate prediction, and visual analysis can determine the distribution of the catechin content when fermenting leaves for different fermentation periods. The findings provide significant reference material for intelligent digital assessment of black tea during processing.


2021 ◽  
Vol 17 (S1) ◽  
Author(s):  
Shenpeng Li ◽  
Graeme O'Keefe ◽  
Ashley Gillman ◽  
Samantha C Burnham ◽  
Colin L Masters ◽  
...  

2021 ◽  
Author(s):  
Alba Paniagua-Diaz ◽  
Alfonso Jimenez Villar ◽  
Ireneusz Grulkowski ◽  
Pablo Artal

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhimin Liu ◽  
Tao Shen ◽  
Ji Zhang ◽  
Zhimin Li ◽  
Yanli Zhao ◽  
...  

Until now, the over-exploitation of wild resources has increased growing concern over the quality of wild medicinal plants. This led to the necessity of developing a rapid method for the evaluation of wild medicinal plants. In this study, the content of total secoiridoids (gentiopicroside, swertiamarin, and sweroside) of Gentiana rigescens from 37 different regions in southwest China were analyzed by high performance liquid chromatography (HPLC). Furthermore, Fourier transform infrared (FT-IR) was adopted to trace the geographical origin (331 individuals) and predict the content of total secoiridoids (273 individuals). In the traditional FT-IR analysis, only one scatter correction technique could be selected from a series of preprocessing candidates to decrease the impact of the light correcting effect. Nevertheless, different scatter correction techniques may carry complementary information so that using the single scatter correction technique is sub-optimal. Hence, the emerging ensemble approach to preprocessing fusion, sequential preprocessing through orthogonalization (SPORT), was carried out to fuse the complementary information linked to different preprocessing methods. The results suggested that, compared with the best results obtained on the scatter correction modeling, SPORT increased the accuracy of the test set by 12.8% in qualitative analysis and decreased the RMSEP by 66.7% in quantitative analysis.


2021 ◽  
Vol 7 (10) ◽  
pp. 199
Author(s):  
Juan Manuel Álvarez-Gómez ◽  
Joaquín Santos-Blasco ◽  
Laura Moliner Martínez ◽  
María José Rodríguez-Álvarez

Improvements in energy resolution of modern positron emission tomography (PET) detectors have created opportunities to implement energy-based scatter correction algorithms. Here, we use the energy information of auxiliary windows to estimate the scatter component. Our method is directly implemented in an iterative reconstruction algorithm, generating a scatter-corrected image without the need for sinograms. The purpose was to implement a fast energy-based scatter correction method on list-mode PET data, when it was not possible to use an attenuation map as a practical approach for the scatter degradation. The proposed method was evaluated using Monte Carlo simulations of various digital phantoms. It accurately estimated the scatter fraction distribution, and improved the image contrast in the simulated studied cases. We conclude that the proposed scatter correction method could effectively correct the scattered events, including multiple scatters and those originated in sources outside the field of view.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ruyi Zhang ◽  
Miao Wang ◽  
Yaqian Zhou ◽  
Shen Wang ◽  
Yiming Shen ◽  
...  

Abstract Background The digital cadmium–zinc–telluride (CZT)-based SPECT system has many advantages, including better spatial and energy resolution. However, the impacts of different acquisition and reconstruction parameters on CZT SPECT quantification might still need to be validated. This study aimed to evaluate the impacts of acquisition parameters (the main energy window and acquisition time per frame) and reconstruction parameters (the number of iterations, subsets in iterative reconstruction, post-filter, and image correction methods) on the technetium quantification of CZT SPECT/CT. Methods A phantom (PET NEMA/IEC image quality, USA) was filled with four target-to-background (T/B) ratios (32:1, 16:1, 8:1, and 4:1) of technetium. Mean uptake values (the calculated mean concentrations for spheres) were measured to evaluate the recovery coefficient (RC) changes under different acquisition and reconstruction parameters. The corresponding standard deviations of mean uptake values were also measured to evaluate the quantification error. Image quality was evaluated using the National Electrical Manufacturers Association (NEMA) NU 2–2012 standard. Results For all T/B ratios, significant correlations were found between iterations and RCs (r = 0.62–0.96 for 1–35 iterations, r = 0.94–0.99 for 35–90 iterations) as well as between the full width at half maximum (FWHM) of the Gaussian filter and RCs (r = − 0.86 to − 1.00, all P values < 0.05). The regression coefficients of 1–35 iterations were higher than those of 35–90 iterations (0.51–1.60 vs. 0.02–0.19). RCs calculated with AC (attenuation correction) + SC (scatter correction) + RR (resolution recovery correction) combination were more accurate (53.82–106.70%) than those calculated with other combinations (all P values < 0.05). No significant statistical differences (all P values > 0.05) were found between the 15% and 20% energy windows except for the 32:1 T/B ratio (P value = 0.023) or between the 10 s/frame and 120 s/frame acquisition times except for the 4:1 T/B ratio (P value = 0.015) in terms of RCs. Conclusions CZT-SPECT/CT of technetium resulted in good quantification accuracy. The favourable acquisition parameters might be a 15% energy window and 40 s/frame of acquisition time. The favourable reconstruction parameters might be 35 iterations, 20 subsets, the AC + SC + RR correction combination, and no filter.


2021 ◽  
Vol 7 (9) ◽  
pp. 181
Author(s):  
Paola Cucuzza ◽  
Silvia Serranti ◽  
Giuseppe Bonifazi ◽  
Giuseppe Capobianco

In this study, effective solutions for polyethylene terephthalate (PET) recycling based on hyperspectral imaging (HSI) coupled with variable selection method, were developed and optimized. Hyperspectral images of post-consumer plastic flakes, composed by PET and small quantities of other polymers, considered as contaminants, were acquired in the short-wave infrared range (SWIR: 1000–2500 nm). Different combinations of preprocessing sets coupled with a variable selection method, called competitive adaptive reweighted sampling (CARS), were applied to reduce the number of spectral bands useful to detect the contaminants in the PET flow stream. Prediction models based on partial least squares-discriminant analysis (PLS-DA) for each preprocessing set, combined with CARS, were built and compared to evaluate their efficiency results. The best performance result was obtained by a PLS-DA model using multiplicative scatter correction + derivative + mean center preprocessing set and selecting only 14 wavelengths out of 240. Sensitivity and specificity values in calibration, cross-validation and prediction phases ranged from 0.986 to 0.998. HSI combined with CARS method can represent a valid tool for identification of plastic contaminants in a PET flakes stream increasing the processing speed as requested by sensor-based sorting devices working at industrial level.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Hajime Ichikawa ◽  
Masahisa Onoguchi ◽  
Takayuki Shibutani ◽  
Toyohiro Kato ◽  
Toshimune Ito ◽  
...  

2021 ◽  
Author(s):  
Nikolaos Sakaltras ◽  
Carlos F. Del Cerro ◽  
Manuel Desco ◽  
Monica Abella

Sign in / Sign up

Export Citation Format

Share Document