dna shuffling
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 6)

H-INDEX

32
(FIVE YEARS 2)

2020 ◽  
Vol 11 (1) ◽  
pp. 7735-7745

Biotechnology is considered one of the most influential technologies in various areas of human life, including health, economics, and the environment. Protein engineering is one of the major biotechnology tools in the field of modification and advancement of biocatalysts capabilities. Among the most effective protein engineering methods, in particular, to improve the industrial strain capabilities, is the shuffling genome method. This study aimed to follow knowledge and biocatalysts engineering techniques based on DNA shuffling methods. In the first step, two procedures were followed (DES method and compatibility according to the concentration gradient of Diazinon) to obtain mutant strains. Acquired mutant strains from both methods were resistant to high concentrations of poison up to 3000 mg/L. The activity of these strains also demonstrated their elevated activity compared to parent samples. The highest activity was related to four strains IR1.G1, IR1.D8, IR1.D4, and IR1.D5, which were 0.234 U/ml, 0.1 U/ml, 0.098 U/ml, and 0.066 U/ml, respectively. The improved strain was obtained via the concentration gradient of the diazinon method (IRL1.G1 strain) in comparison with IRL1.D8 strain (owning highest activity through DES method) possesses excessive activity in 3000 mg/L concentration of Diazinon. The evaluated results of first-generation genome shuffling of strains (the first round of protoplast fusion) also indicated that those shuffled strains with the ability to grow in the vicinity of the toxin (3000 mg/L concentration of Diazinon) showed better activity than obtained mutated strains by both methods (concentration gradient of the toxin and the DES method). In the final stage, the best results were related to IRL1.F2, IRL1.F3, and IRL1.F1 shuffled strains with 0.541 mg/L, 0.523 mg/L, and 0.509 mg/L, respectively. The highest activity belonged to the IRL1.F2 genome shuffled strain (first round of protoplast fusion). This strain could grow in a high concentration of toxin, and also, the activity was increased 30, 3.6, and 2.3 times in comparison with the parent strain (IRL1), IRL.D8 mutant, and IRL1.G1, respectively.


Bioengineered ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 182-189 ◽  
Author(s):  
Fengju Ouyang ◽  
Min Zhao

2018 ◽  
Vol 9 ◽  
Author(s):  
Evangelia G. Chronopoulou ◽  
Anastassios C. Papageorgiou ◽  
Farid Ataya ◽  
Irini Nianiou-Obeidat ◽  
Panagiotis Madesis ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Alvaro Mauricio Florez ◽  
Miguel Orlando Suarez-Barrera ◽  
Gloria M. Morales ◽  
Karen Viviana Rivera ◽  
Sergio Orduz ◽  
...  

Toxicon ◽  
2018 ◽  
Vol 153 ◽  
pp. 32-38
Author(s):  
Shimin Sun ◽  
Denghong Zhang ◽  
Jing Zhang ◽  
Chunhong Huang ◽  
Ying Xiong

Immunotherapy ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 951-969
Author(s):  
Zhitao Li ◽  
Jia Ding ◽  
Xiuyun Zhao ◽  
Gaofu Qi

Sign in / Sign up

Export Citation Format

Share Document