pedal ganglion
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 0)

H-INDEX

11
(FIVE YEARS 0)

2018 ◽  
Vol 120 (4) ◽  
pp. 1461-1471 ◽  
Author(s):  
Christopher Brandon ◽  
Matthew Britton ◽  
David Fan ◽  
Andrew R. Ferrier ◽  
Evan S. Hill ◽  
...  

The pedal ganglion of the nudibranch gastropod Tritonia diomedea has been the focus of neurophysiological studies for more than 50 yr. These investigations have examined the neural basis of behaviors as diverse as swimming, crawling, reflex withdrawals, orientation to water flow, orientation to the earth’s magnetic field, and learning. Despite this sustained research focus, most studies have confined themselves to the layer of neurons that are visible on the ganglion surface, leaving many neurons, which reside in deeper layers, largely unknown and thus unstudied. To facilitate work on such neurons, the present study used serial-section light microscopy to generate a detailed pictorial atlas of the pedal ganglion. One pedal ganglion was sectioned horizontally at 2-µm intervals and another vertically at 5-µm intervals. The resulting images were examined separately or combined into stacks to generate movie tours through the ganglion. These were also used to generate 3D reconstructions of individual neurons and rotating movies of digitally desheathed whole ganglia to reveal all surface neurons. A complete neuron count of the horizontally sectioned ganglion yielded 1,885 neurons. Real and virtual sections from the image stacks were used to reveal the morphology of individual neurons, as well as the major axon bundles traveling within the ganglion to and between its several nerves and connectives. Extensive supplemental data are provided, as well as a link to the Dryad Data Repository site, where the complete sets of high-resolution serial-section images can be downloaded. NEW & NOTEWORTHY Because of the large size and relatively low numbers of their neurons, gastropod mollusks are widely used for investigations of the neural basis of behavior. Most studies, however, focus on the neurons visible on the ganglion surface, leaving the majority, located out of sight below the surface, unexamined. The present light microscopy study generates the first detailed visual atlas of all neurons of the highly studied Tritonia pedal ganglion.



eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Angela M Bruno ◽  
William N Frost ◽  
Mark D Humphries

The joint activity of neural populations is high dimensional and complex. One strategy for reaching a tractable understanding of circuit function is to seek the simplest dynamical system that can account for the population activity. By imaging Aplysia’s pedal ganglion during fictive locomotion, here we show that its population-wide activity arises from a low-dimensional spiral attractor. Evoking locomotion moved the population into a low-dimensional, periodic, decaying orbit - a spiral - in which it behaved as a true attractor, converging to the same orbit when evoked, and returning to that orbit after transient perturbation. We found the same attractor in every preparation, and could predict motor output directly from its orbit, yet individual neurons’ participation changed across consecutive locomotion bouts. From these results, we propose that only the low-dimensional dynamics for movement control, and not the high-dimensional population activity, are consistent within and between nervous systems.



2017 ◽  
Author(s):  
Angela M. Bruno ◽  
William N. Frost ◽  
Mark D. Humphries

AbstractThe joint activity of neural populations is high dimensional and complex. One strategy for reaching a tractable understanding of circuit function is to seek the simplest dynamical system that can account for the population activity. By imaging Aplysia’s pedal ganglion during fictive locomotion, here we show that its population-wide activity arises from a low-dimensional spiral attractor. Evoking locomotion moved the population into a low-dimensional, periodic, decaying orbit −a spiral −in which it behaved as a true attractor, converging to the same orbit when evoked, and returning to that orbit after transient perturbation. We found the same attractor in every preparation, and could predict motor output directly from its orbit, yet individual neurons’ participation changed across consecutive locomotion bouts. From these results, we propose that only the low-dimensional dynamics for movement control, and not the high-dimensional population activity, are consistent within and between nervous systems.



2016 ◽  
Vol 25 (2) ◽  
pp. 217-224 ◽  
Author(s):  
Lígia Miranda Ferreira Borges ◽  
Andrew Yongsheng Li ◽  
Pia Untalan Olafson ◽  
Robert Renthal ◽  
Gary Roy Bauchan ◽  
...  

Abstract The present study was conducted to elucidate the neuronal pathways between peripheral olfactory and taste sensilla and the synganglion in an Ixodidae tick species. The tarsus of the front legs (olfactory nerves) and the fourth palpal segment (gustatory nerves) of unfed Amblyomma americanum males and females were excised. A neuronal tracer, dextran tetramethylrhodamine, was used for filling of the sensory neurons. The synganglion preparations were examined using a confocal microscope. Neuronal arborizations from the Haller’s organ were confined to the olfactory lobes and the first pedal ganglion. The estimated number of olfactory glomeruli ranged from 16 to 22 per olfactory lobe in the females. The number of glomeruli was not counted in males because they were densely packed. Sensory neurons associated with sensilla at the distal end of the palpal organ projected into the palpal ganglion in the synganglion through the palpal nerve. Gustatory sensory neurons associated with palpal sensilla projected into a commissure with several bulges, which are confined in the palpal ganglion. The findings of distinct projection patterns of sensory neurons associated with the Haller’s organ and palpal organ in the lone star tick from this study advanced our knowledge on mechanisms of sensory information processing in ticks.



2014 ◽  
Vol 112 (6) ◽  
pp. 1317-1328 ◽  
Author(s):  
Akira Sakurai ◽  
Charuni A. Gunaratne ◽  
Paul S. Katz

The central pattern generator (CPG) underlying the rhythmic swimming behavior of the nudibranch Melibe leonina (Mollusca, Gastropoda, Heterobranchia) has been described as a simple half-center oscillator consisting of two reciprocally inhibitory pairs of interneurons called swim interneuron 1 (Si1) and swim interneuron 2 (Si2). In this study, we identified two additional pairs of interneurons that are part of the swim CPG: swim interneuron 3 (Si3) and swim interneuron 4 (Si4). The somata of Si3 and Si4 were both located in the pedal ganglion, near that of Si2, and both had axons that projected through the pedal commissure to the contralateral pedal ganglion. These neurons fulfilled the criteria for inclusion as members of the swim CPG: 1) they fired at a fixed phase in relation to Si1 and Si2, 2) brief changes in their activity reset the motor pattern, 3) prolonged changes in their activity altered the periodicity of the motor pattern, 4) they had monosynaptic connections with each other and with Si1 and Si2, and 5) their synaptic actions helped explain the phasing of the motor pattern. The results of this study show that the motor pattern has more complex internal dynamics than a simple left/right alternation of firing; the CPG circuit appears to be composed of two kernels of reciprocally inhibitory neurons, one consisting of Si1, Si2, and the contralateral Si4 and the other consisting of Si3. These two kernels interact with each other to produce a stable rhythmic motor pattern.



2013 ◽  
Vol 117 (42) ◽  
pp. 13069-13081 ◽  
Author(s):  
An-Phong Le ◽  
Somi Kang ◽  
Lucas B. Thompson ◽  
Stanislav S. Rubakhin ◽  
Jonathan V. Sweedler ◽  
...  


2009 ◽  
Vol 101 (2) ◽  
pp. 824-833 ◽  
Author(s):  
Terry Crow ◽  
Lian-Ming Tian

A Pavlovian-conditioning procedure may produce modifications in multiple behavioral responses. As an example, conditioning may result in the elicitation of a specific somatomotor conditioned response (CR) and, in addition, other motor and visceral CRs. In the mollusk Hermissenda conditioning produces two conditioned responses: foot-shortening and decreased locomotion. The neural circuitry supporting ciliary locomotion is well characterized, although the neural circuit underlying foot-shortening is poorly understood. Here we describe efferent neurons in the pedal ganglion that produce contraction or extension of specific regions of the foot in semi-intact preparations. Synaptic connections between polysensory type Ib and type Is interneurons and identified foot contractile efferent neurons were examined. Type Ib and type Is interneurons receive synaptic input from the visual, graviceptive, and somatosensory systems. Depolarization of type Ib interneurons evoked spikes in identified tail and lateral foot contractile efferent neurons. Mechanical displacement of the statocyst evoked complex excitatory postsynaptic potentials (EPSPs) and spikes recorded from type Ib and type Is interneurons and complex EPSPs and spikes in identified foot contractile efferent neurons. Depolarization of type Ib interneurons in semi-intact preparations produced contraction and shortening along the rostrocaudal axis of the foot. Depolarization of Is interneurons in semi-intact preparations produced contraction of the anterior region of the foot. Taken collectively, the results suggest that type Ib and type Is polysensory interneurons may contribute to the neural circuit underlying the foot-shortening CR in Hermissenda.



2008 ◽  
Vol 100 (5) ◽  
pp. 2919-2928 ◽  
Author(s):  
Evan S. Hill ◽  
Akira Sakurai ◽  
Paul S. Katz

Enhancement of presynaptic Ca2+ signals is widely recognized as a potential mechanism for heterosynaptic potentiation of neurotransmitter release. Here we show that stimulation of a serotonergic interneuron increased spike-evoked Ca2+ in a manner consistent with its neuromodulatory effect on synaptic transmission. In the gastropod mollusk, Tritonia diomedea, stimulation of a serotonergic dorsal swim interneuron (DSI) at physiological rates heterosynaptically enhances the strength of output synapses made by another swim interneuron, C2, onto neurons in the pedal ganglion. Using intracellular electrophysiological recording combined with real-time confocal imaging of C2 (loaded with Oregon Green Bapta 1), it was determined that DSI stimulation increases the amplitude of spike-evoked Ca2+ signals in C2 without altering basal Ca2+ signals. This neuromodulatory action was restricted to distal neurites of C2 where synapses with pedal neurons are located. The effect of DSI stimulation on C2 spike-evoked Ca2+ signals resembled DSI heterosynaptic enhancement of C2 synapses in several measures: both decayed within 15 s, both were abolished by the serotonin receptor antagonist, methysergide, and both were independent of DSI's depolarizing actions on C2. A brief puff of serotonin could mimic the enhancement of spike-evoked Ca2+ signals in the distal neurites of C2, but larger puffs or bath-applied serotonin elicited nonphysiological effects. These results suggest that DSI heterosynaptic enhancement of C2 synaptic strength may be mediated by a local enhancement of spike-evoked Ca2+ signals in the distal neurites of C2.





2000 ◽  
Vol 879 (1-2) ◽  
pp. 73-87 ◽  
Author(s):  
Atsuko Schütt ◽  
Theodore H. Bullock ◽  
Erol Başar


Sign in / Sign up

Export Citation Format

Share Document