reflection imaging
Recently Published Documents


TOTAL DOCUMENTS

356
(FIVE YEARS 59)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Rio Yanagi ◽  
Keizo Cho ◽  
Hiroaki Nakabayashi ◽  
Koji Suizu

Author(s):  
Limin Wu ◽  
Yuye Wang ◽  
Haibin Li ◽  
Zelong Wang ◽  
Meilan Ge ◽  
...  

2021 ◽  
Author(s):  
Pradeep Menon ◽  
Tarek Swedan ◽  
Kamran Jan ◽  
M. S. Al-Shehhi ◽  
Piyanuch Kieduppatum ◽  
...  

Abstract Increasing demands for gas in UAE have led to increased focus on more tight gas reservoirs like Khuff and pre-Khuff formations, away from the conventional oil-bearing carbonate reservoirs. The case study presented is in an offshore field, Northwest of Abu Dhabi city. The structure, with an area of 50 Sq.km was first identified in 1966 and it is part of the regional N-S extending structural. The multi-discipline approach applied in this study required the integration of a suite of open-hole data over a variety of length scales. Combination of the Borehole Acoustic Reflection Imaging technique and borehole imaging logs (BHI) in 3D, provides a better understanding of the complex fracturing network and the associated formation stress orientation up to 100ft away from the wellbore. The ability to "see" away from wellbore what was previously hidden on seismic, allows unlocking further potential reserves or avoiding certain production hazards. The well has penetrated the highly economical tight clastic Pre-khuff formation and the carbonate Kuff formation, allowing the analysis over a large geological history of offshore Abu Dhabi. The coherency of all data has helped establish for the first time a baseline understanding of the role of the fractures and fault in the petrophysical properties distribution along the wellbore and the 3D structural characterization in an larger area around the wellbore (up to 100ft). The emphasize in this paper is on the Borehole Acoustic Reflection Imaging technique (DSWI), which allows the identification of both intersecting and non-intersecting of geological features with a depth of investigation up to 100 ft away from the borehole. Moreover, the combination of DSWI with BHI have been used for the anisotropy estimation away from wellbore especially in a very tight and fractured reservoir deciphering multiple fault orientation, which potentially, cancel the anisotropy estimation due to destructive interference. In addition to the presence of drilling induced fractures interfering in with the natural fracture as seen on the BHI. The detailed BHI interpretation and the petrophysical data revealed that the fracture densities and orientation vary from bottom to top interval indicating tectonic regimes affecting the field. The lithological variation due to the evolution of the depositional setting has significantly influenced the fracture distribution and their length. The presence of these induced fractures and how deep they propagate into the formation, dominates the behavior acoustic anisotropy by reaching the flexural (dipole shear) investigation zone (3 to 4ft deep). It is also interesting to see the behavior of both natural and induced fractures and their respective strike change over the different formations revealing a geomechanically complex structure.


Geophysics ◽  
2021 ◽  
pp. 1-56
Author(s):  
Chao Li ◽  
Hao Chen ◽  
Xiao He ◽  
Xiuming Wang

The borehole dipole shear-wave reflection imaging method has a high potential in heterogeneous reservoir explorations because of its deep investigation depth and relatively large reflection amplitude. However, the generally used shear horizontal (SH) reflection approach can only indicate the reflector strike and has an inherent defect in azimuth ambiguity. We have developed a multicomponent cross-dipole array acoustic measurement with four azimuthally distributed receiver arrays and a method using reflected dipole P-waves to eliminate the azimuth ambiguity caused by the SH reflection. The recorded data includes cross-dipole waves with four components and two combined dipole-monopole waves that stack the data of the four azimuthally distributed receivers induced by each dipole source. A theoretical analysis indicates that the dipole compressional reflection is sensitive to the reflector azimuth. Therefore, the cross-dipole waves are first used to determine the reflective interface strike with the SH reflection. The compressional reflections obtained from both the cross-dipole data and the combined dipole-monopole data are then processed to identify the correct azimuth. The effectiveness and accuracy of the method are validated via both synthetic and field data examples in a soft formation. The proposed method may potentially solve the azimuth ambiguity problem in borehole acoustic reflection imaging and fully use cross-dipole acoustic measurements.


2021 ◽  
pp. 105415
Author(s):  
Briac MONNIER ◽  
Gérard PERGENT ◽  
Miguel Ángel MATEO ◽  
Ramon CARBONELL ◽  
Philippe CLABAUT ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document