intron evolution
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 8)

H-INDEX

15
(FIVE YEARS 1)

Author(s):  
C. L. Gandini ◽  
V. N. Ibañez ◽  
M. K. Zubko ◽  
M. V. Sanchez-Puerta
Keyword(s):  

2021 ◽  
Author(s):  
Ming-Yue Ma ◽  
Ji Xia ◽  
Kunxian Shu ◽  
Deng-Ke Niu

AbstractThe evolution of spliceosomal introns has been widely studied among various eukaryotic groups. Researchers nearly reached the consensuses on the pattern and the mechanisms of intron losses and gains across eukaryotes. However, according to previous studies that analyzed a few genes or genomes of nematodes, Nematoda seem to be an eccentric group. Taking advantage of the recent accumulation of sequenced genomes, we carried out an extensive analysis on the intron losses and gains using 104 nematodes genomes across all the five Clades of the phylum. Nematodes have a wide range of intron density, from less than one to more than nine per 1kbp coding sequence. The rates of intron losses and gains exhibit significant heterogeneity both across different nematode lineages and across different evolutionary stages of the same lineage. The frequency of intron losses far exceeds that of intron gains. Five pieces of evidence supporting the model of cDNA-mediated intron loss have been observed in ten Caenorhabditis species, the dominance of the precise intron losses, frequent loss of adjacent introns, and high-level expression of the intron-lost genes, preferential losses of short introns, and the preferential losses of introns close to 3′-ends of genes. Like studies in most eukaryotic groups, we cannot find the source sequences for the limited number of intron gains detected in the Caenorhabditis genomes. All the results indicate that nematodes are a typical eukaryotic group rather than an outlier in intron evolution.


Author(s):  
Chun Shen Lim ◽  
Brooke N Weinstein ◽  
Scott W Roy ◽  
Chris M Brown

Abstract Previous evolutionary reconstructions have concluded that early eukaryotic ancestors including both the last common ancestor of eukaryotes and of all fungi had intron-rich genomes. By contrast, some extant eukaryotes have few introns, underscoring the complex histories of intron-exon structures, and raising the question as to why these few introns are retained. Here we have used recently available fungal genomes to address a variety of questions related to intron evolution. Evolutionary reconstruction of intron presence and absence using 263 diverse fungal species supports the idea that massive intron reduction through intron loss has occurred in multiple clades. The intron densities estimated in various fungal ancestors differ from zero to 7.6 introns per one kbp of protein-coding sequence. Massive intron loss has occurred not only in microsporidian parasites and saccharomycetous yeasts, but also in diverse smuts and allies. To investigate the roles of the remaining introns in highly-reduced species, we have searched for their special characteristics in eight intron-poor fungi. Notably, the introns of ribosome associated genes RPL7 and NOG2 have conserved positions; both intron-containing genes encoding snoRNAs. Furthermore, both the proteins and snoRNAs are involved in ribosome biogenesis, suggesting that the expression of the protein-coding genes and non-coding snoRNAs may be functionally coordinated. Indeed, these introns are also conserved in three-quarters of fungi species. Our study shows that fungal introns have a complex evolutionary history and underappreciated roles in gene expression.


2021 ◽  
Vol 17 ◽  
pp. 117693432098855
Author(s):  
Jun-Ming Mao ◽  
Yong Wang ◽  
Liu Yang ◽  
Qin Yao ◽  
Ke-Ping Chen

Introns are highly variable in number and size. Sequence simulation is an effective method to elucidate intron evolution patterns. Previously, we have reported that introns are more likely to evolve through mutation-and-deletion (MD) rather than through mutation-and-insertion (MI). In the present study, we further studied evolution models by allowing insertion in the MD model and by allowing deletion in the MI model at various frequencies. It was found that all deletion-biased models with proper parameter settings could generate sequences with attributes matchable to 16 invertebrate introns from the microphthalmia transcription factor gene, whereas all insertion-biased models with any parameter settings failed to generate such sequences. We conclude that the examined invertebrate introns may have evolved from a longer ancestral sequence in a deletion-biased pattern. The constructed models are useful for studying the evolution of introns from other genes and/or from other taxonomic groups. (C++ scripts of all deletion- and insertion-biased models are available upon request.)


2020 ◽  
Author(s):  
Scott William Roy ◽  
Landen Gozashti ◽  
Bradley A. Bowser ◽  
Brooke N. Weinstein ◽  
Graham E. Larue

SummarySpliceosomal introns, which interrupt nuclear genes and are removed from RNA transcripts by machinery termed spliceosomes, are ubiquitous features of eukaryotic nuclear genes [1]. Patterns of spliceosomal intron evolution are complex, with some lineages exhibiting virtually no intron creation while others experience thousands of intron gains [2–5]. One possibility is that this punctate phylogenetic distribution is explained by intron creation by Introner-Like Elements (ILEs), transposable elements capable of creating introns, with only those lineages harboring ILEs undergoing massive intron gain [6–10]. However, ILEs have been reported in only four lineages. Here we study intron evolution in dinoflagellates. The remarkable fragmentation of nuclear genes by spliceosomal introns reaches its apex in dinoflagellates, which have some twenty introns per gene [11,12]. Despite this, almost nothing is known about the molecular and evolutionary mechanisms governing dinoflagellate intron evolution. We reconstructed intron evolution in five dinoflagellate genomes, revealing a dynamic history of intron loss and gain. ILEs are found in 4/5 studied species. In one species, Polarella glacialis, we find an unprecedented diversity of ILEs, with ILE insertion leading to creation of some 12,253 introns, and with 15 separate families of ILEs accounting for at least 100 introns each. These ILE families range in mobilization mechanism, mechanism of intron creation, and flexibility of mechanism of intron creation. Comparison within and between ILE families provides evidence that biases in so-called intron phase, the distribution of introns relative to codon periodicity, are driven by ILE insertion site requirements [9,13,14]. Finally, we find evidence for multiple additional transformations of the spliceosomal system in dinoflagellates, including widespread loss of ancestral introns, and alterations in required, tolerated and favored splice motifs. These results reveal unappreciated intron creating elements diversity and spliceosomal evolutionary capacity, and suggest complex evolutionary dependencies shaping genome structures.


2020 ◽  
Vol 16 ◽  
pp. 117693432090310
Author(s):  
Guang-Dong Wang ◽  
Yong Wang ◽  
Zhen Zeng ◽  
Jun-Ming Mao ◽  
Qin-Liu He ◽  
...  

Introns are well known for their high variation not only in length but also in base sequence. The evolution of intron sequences has aroused broad interest in the past decades. However, very little is known about the evolutionary pattern of introns due to the lack of efficient analytical method. In this study, we designed 2 evolutionary models, that is, mutation-and-deletion (MD) and mutation-and-insertion (MI), to simulate intron evolution using randomly generated and mutated bases by referencing to the phylogenetic tree constructed using 14 chordate introns from TF4 (transcription factor–like protein 4) gene. A comparison of attributes between model-generated sequences and chordate introns showed that the MD model with proper parameter settings could generate sequences that have attributes matchable to chordate introns, whereas the MI model with any parameter settings failed in doing so. These data suggest that the surveyed chordate introns have evolved from a long ancestral sequence through gradual reduction in length. The established methodology provides an effective measure to study the evolutionary pattern of intron sequences from organisms of various taxonomic groups. (C++ scripts of MD and MI models are available upon request.)


2018 ◽  
Vol 29 (2) ◽  
pp. 437-442 ◽  
Author(s):  
Antonia Cianciulli ◽  
Rosa Calvello ◽  
Vincenzo Mitolo ◽  
Maria Antonietta Panaro

Sign in / Sign up

Export Citation Format

Share Document