pyroclastic flow
Recently Published Documents


TOTAL DOCUMENTS

307
(FIVE YEARS 28)

H-INDEX

38
(FIVE YEARS 3)

2021 ◽  
Author(s):  
◽  
Tadiwos Chernet

<p>The Taupo Pumice Formation is a product of the Taupo eruption of about 1800a, and consists of three phreatomagmatic ash deposits, two plinian pumice deposits and a major low-aspect ratio and low grade (unwelded) ignimbrite which covered most part of the central North Island of New Zealand. The vent area for the eruption is located at Horomatangi Reefs in Lake Taupo. Lithics in the phreatoplinian ash deposits are negligible in quantity, but the plinian pumice deposits contain 5-10% lithics by volume in most near-vent sections. Lithics in the plinian pumice deposits are dominantly banded and spherulitic rhyolite with minor welded tuff, dacite and andesite. The ground layer which forms the base of the ignimbrite unit consists of dominantly lithics and crystals and is formed by the gravitational sedimentation of the 'heavies' from the strongly fluidized head of the pyroclastic flow. Lithic blocks in the ground layer are dominantly banded and spherulitic phenocryst-poor rhyolite, welded tuff with minor dacite and andesite. Near-vent exposures of the ground layer contain boulders upto 2 m in diameter. Friable blocks of hydrothermally altered rhyolite, welded tuff and lake sediments are found fractured but are preserved intact after transportation. This shows that the fluid/pyroclastic particle mixture provided enough support to carry such blocks upto a distance of 10 km from the vent. The rhyolite blocks are subdivided into hypersthene rhyolite, hypersthene-hornblende rhyolite and biotite-bearing rhyolite on the basis of the dominant ferromagnesian phenocryst assamblage. Hypersthene is the dominant ferromagnesian phenocryst in most of the rhyolite blocks in the ground layer and forms the major ferromagnesian crystal of the Taupo Sub-group tephra. The rhyolite blocks have similar whole rock chemistry to the Taupo Sub-group tephra and are probably derived from lava extrusions associated with the tephra eruptions from the Taupo Volcanic Centre in the last 10 ka. Older rhyolite domes and flows in the area are probably represented by the intensely hydrothermally altered rhyolite blocks in the ground layer. The dacite blocks contain hypersthene and augite as a major ferromagnesian phenocryst. Whole rock major and trace element analyses shows that the dacite blocks are distinct from the Tauhara dacites and from the dacites of Tongariro Volcanic Centre. The occurrence of dacite inclusions in significant quantity in the Taupo Pumice Formation indicates the presence of other dacite flows near the vent area. Four types of andesite blocks; hornblende andesite, plagioclase-pyroxene andesite, pyroxene andesite and olivine andesite occur as lithic blocks in the ground layer. The andesites are petrographically distinct from those encountered in deep drillholes at Wairakei (Waiora Valley Andesites), and are different from the Rolles Peak andesite in having lower Sr content. The andesite blocks show similar major and trace element content to those from the Tongariro Volcanic Centre. The roundness of the andesite blocks indicates that the blocks were transported as alluvium or lahars in to the lake basin before being incorporated into the pyroclastic flow. Two types of welded ignimbrite blocks are described. The lithic-crystal rich ignimbrite is correlated with a post-Whakamaru Group Ignimbrite (ca. 100 ka ignimbrite erupted from Taupo Volcanic Centre) which crops out to the north of Lake Taupo. The crystal rich ignimbrite is tentatively correlated with the Whakamaru Group Ignimbrites. The lake sediment boulders, pumiceous mudstone and siltstone in the ground layer probably correlate to the Huka Group sediments or younger Holocene sediments in the lake basin. A comparative mineral chemistry study of the lithic blocks was done. A change in chemistry of individual mineral species was found to accompany the variation in wholerock major element constituents in the different types of lithics. The large quantity of lithic blocks in the ground layer suggests extensive vent widening at the begining of the ignimbrite eruption. A simple model of flaring and collapse of the vent area caused by the down ward movement of the fragmentation surface is presented to explain the origin of the lithic blocks in the ground layer. The lithics in the Taupo Pumice Formation are therfore produced by the disruption of the country rock around the vent during the explosion and primary xenoliths from depths of magma generation were not found. Stratigraphic relations suggest that the most important depth of incorporation of lithics is within the post-Whakamaru Group Ignimbrite volcanics and volcaniclastic sedimentary units.</p>


2021 ◽  
Author(s):  
◽  
Tadiwos Chernet

<p>The Taupo Pumice Formation is a product of the Taupo eruption of about 1800a, and consists of three phreatomagmatic ash deposits, two plinian pumice deposits and a major low-aspect ratio and low grade (unwelded) ignimbrite which covered most part of the central North Island of New Zealand. The vent area for the eruption is located at Horomatangi Reefs in Lake Taupo. Lithics in the phreatoplinian ash deposits are negligible in quantity, but the plinian pumice deposits contain 5-10% lithics by volume in most near-vent sections. Lithics in the plinian pumice deposits are dominantly banded and spherulitic rhyolite with minor welded tuff, dacite and andesite. The ground layer which forms the base of the ignimbrite unit consists of dominantly lithics and crystals and is formed by the gravitational sedimentation of the 'heavies' from the strongly fluidized head of the pyroclastic flow. Lithic blocks in the ground layer are dominantly banded and spherulitic phenocryst-poor rhyolite, welded tuff with minor dacite and andesite. Near-vent exposures of the ground layer contain boulders upto 2 m in diameter. Friable blocks of hydrothermally altered rhyolite, welded tuff and lake sediments are found fractured but are preserved intact after transportation. This shows that the fluid/pyroclastic particle mixture provided enough support to carry such blocks upto a distance of 10 km from the vent. The rhyolite blocks are subdivided into hypersthene rhyolite, hypersthene-hornblende rhyolite and biotite-bearing rhyolite on the basis of the dominant ferromagnesian phenocryst assamblage. Hypersthene is the dominant ferromagnesian phenocryst in most of the rhyolite blocks in the ground layer and forms the major ferromagnesian crystal of the Taupo Sub-group tephra. The rhyolite blocks have similar whole rock chemistry to the Taupo Sub-group tephra and are probably derived from lava extrusions associated with the tephra eruptions from the Taupo Volcanic Centre in the last 10 ka. Older rhyolite domes and flows in the area are probably represented by the intensely hydrothermally altered rhyolite blocks in the ground layer. The dacite blocks contain hypersthene and augite as a major ferromagnesian phenocryst. Whole rock major and trace element analyses shows that the dacite blocks are distinct from the Tauhara dacites and from the dacites of Tongariro Volcanic Centre. The occurrence of dacite inclusions in significant quantity in the Taupo Pumice Formation indicates the presence of other dacite flows near the vent area. Four types of andesite blocks; hornblende andesite, plagioclase-pyroxene andesite, pyroxene andesite and olivine andesite occur as lithic blocks in the ground layer. The andesites are petrographically distinct from those encountered in deep drillholes at Wairakei (Waiora Valley Andesites), and are different from the Rolles Peak andesite in having lower Sr content. The andesite blocks show similar major and trace element content to those from the Tongariro Volcanic Centre. The roundness of the andesite blocks indicates that the blocks were transported as alluvium or lahars in to the lake basin before being incorporated into the pyroclastic flow. Two types of welded ignimbrite blocks are described. The lithic-crystal rich ignimbrite is correlated with a post-Whakamaru Group Ignimbrite (ca. 100 ka ignimbrite erupted from Taupo Volcanic Centre) which crops out to the north of Lake Taupo. The crystal rich ignimbrite is tentatively correlated with the Whakamaru Group Ignimbrites. The lake sediment boulders, pumiceous mudstone and siltstone in the ground layer probably correlate to the Huka Group sediments or younger Holocene sediments in the lake basin. A comparative mineral chemistry study of the lithic blocks was done. A change in chemistry of individual mineral species was found to accompany the variation in wholerock major element constituents in the different types of lithics. The large quantity of lithic blocks in the ground layer suggests extensive vent widening at the begining of the ignimbrite eruption. A simple model of flaring and collapse of the vent area caused by the down ward movement of the fragmentation surface is presented to explain the origin of the lithic blocks in the ground layer. The lithics in the Taupo Pumice Formation are therfore produced by the disruption of the country rock around the vent during the explosion and primary xenoliths from depths of magma generation were not found. Stratigraphic relations suggest that the most important depth of incorporation of lithics is within the post-Whakamaru Group Ignimbrite volcanics and volcaniclastic sedimentary units.</p>


2021 ◽  
Author(s):  
◽  
Paul C Froggatt

<p>Rhyolitic pyroclastic eruptives from the Taupo area, New Zealand have been mapped as nine tephra formations of Holocene (0-10 kyr B.P.), and six of late Pleistocene age (20-c.50 kyr B.P.). Only the 10 younger tephras are dated by radiocarbon. All formations contain PLINIAN type airfall units but three, KAWAKAWA, WAIMIHIA and TAUPO also contain a major pyroclastic flow deposit (IGNIMBRIIE) unit. Dome extrusion can only be demonstrated for KARAPITI eruptive episode, but is inferred for the other Holocene episodes. TAUPO IGNIMBRITE is the product of the most recent eruption and is a particularly well preserved and extensive, unwelded pyroclastic flow deposit, up to 50m thick. Its variety of appearance is described in terms of three lithofacies; valley facies, fines depleted facies and veneer facies, each being formed by particular mechanisms within a pyroclastic flow. Abundant charred logs, lying prone within Taupo Ignimbrite, are radial about the source and attest to a radially outward moving mass dominated by laminar flow. Lake Taupo today covers most of the volcanic source area, preventing close examination and the identification of individual source vents. A vent for each Holocene tephra is inferred from isopachs, grainsize and lake bathymetry, but the vents so inferred show no spatial distribution with time. Nevertheless they are evenly spaced along a northeast trending line and lie on intersections with a northwest trending set of lineations, indicating deep, crustal, structural control on volcanism. Cumulative volume of airfall and ignimbrite material erupted in the Taupo area in the last 50 kyr has amounted to about 175 km3 of magma. Eruptions have proceeded in a step-wise manner, indicating the period to the next eruption is about 8 kyr. By the same approach, the next eruption from the Okataina area, 50 km to the north of Taupo is expected in less than 400 years. Whole rock and mineral chemistry clearly distinguishes between the Holocene and the late Pleistocene tephras, but within each group variations are subtle and no trends with time are apparent. None of the formations exhibit evidence for a chemically zoned magma body, but some data, especially pyroxene phenocryst chemistry, suggests magma inhomogeneities of mafic elements. The Holocene tephra were probably all erupted from the same magma chamber in which crystallisation was the dominant process but convection, crystal element diffusion and chamber replenishment were all probably operative. Results obtained by electron microprobe analysis of glass shards are critically dependent on the beam diameter and current used. By standardising these at 10 microns and 8 nanoamps respectively, comparable major element analyses on glass shards from numerous tephras ranging in age from 20 kyr to 600 kyr were obtained. The stratigraphic relationships between sets of samples (located mainly distal from source) and the close chemical similarity of some samples enabled a comprehensive tephrostratigraphy to be established. In particular, MT. CURL TEPHRA has a glass chemistry quite different from other stratigraphically separate tephras, establishing correlation of Mt. Curl Tephra to Whakamaru Ignimbrite. Likewise, other ignimbrite formations can be correlated to widespread airfall tephras, so establishing an absolute ignimbrite stratigraphy. Microprobe analysis of glass shards provides a method for indirectly determining the amount of hydration. For dated samples from a known weathering environment, the parameters controlling hydration can be quantified. For glass of uniform chemistry, shard size and porosity, ground temperature and groundwater movements are the most important parameters. No shards in the 63-250 micron size range have been found with more than 9% water, suggesting once this maximum is reached, glass rapidly alters to secondary products. Detailed knowledge of the volcanic history of the Taupo area, particularly since 50 kyrs B.P. allows the volcanic hazards of the region to be assessed. Fifteen major eruptions in 50 kyr gives a frequency of 1 in 3300 years, but the timing of individual events is not evenly spread throughout that time. Monitoring for volcanic Precursory events (not being undertaken at present) is essential to gauge the present and short-term future volcanic activity of the Taupo Volcanic Zone.</p>


2021 ◽  
Author(s):  
◽  
Paul C Froggatt

<p>Rhyolitic pyroclastic eruptives from the Taupo area, New Zealand have been mapped as nine tephra formations of Holocene (0-10 kyr B.P.), and six of late Pleistocene age (20-c.50 kyr B.P.). Only the 10 younger tephras are dated by radiocarbon. All formations contain PLINIAN type airfall units but three, KAWAKAWA, WAIMIHIA and TAUPO also contain a major pyroclastic flow deposit (IGNIMBRIIE) unit. Dome extrusion can only be demonstrated for KARAPITI eruptive episode, but is inferred for the other Holocene episodes. TAUPO IGNIMBRITE is the product of the most recent eruption and is a particularly well preserved and extensive, unwelded pyroclastic flow deposit, up to 50m thick. Its variety of appearance is described in terms of three lithofacies; valley facies, fines depleted facies and veneer facies, each being formed by particular mechanisms within a pyroclastic flow. Abundant charred logs, lying prone within Taupo Ignimbrite, are radial about the source and attest to a radially outward moving mass dominated by laminar flow. Lake Taupo today covers most of the volcanic source area, preventing close examination and the identification of individual source vents. A vent for each Holocene tephra is inferred from isopachs, grainsize and lake bathymetry, but the vents so inferred show no spatial distribution with time. Nevertheless they are evenly spaced along a northeast trending line and lie on intersections with a northwest trending set of lineations, indicating deep, crustal, structural control on volcanism. Cumulative volume of airfall and ignimbrite material erupted in the Taupo area in the last 50 kyr has amounted to about 175 km3 of magma. Eruptions have proceeded in a step-wise manner, indicating the period to the next eruption is about 8 kyr. By the same approach, the next eruption from the Okataina area, 50 km to the north of Taupo is expected in less than 400 years. Whole rock and mineral chemistry clearly distinguishes between the Holocene and the late Pleistocene tephras, but within each group variations are subtle and no trends with time are apparent. None of the formations exhibit evidence for a chemically zoned magma body, but some data, especially pyroxene phenocryst chemistry, suggests magma inhomogeneities of mafic elements. The Holocene tephra were probably all erupted from the same magma chamber in which crystallisation was the dominant process but convection, crystal element diffusion and chamber replenishment were all probably operative. Results obtained by electron microprobe analysis of glass shards are critically dependent on the beam diameter and current used. By standardising these at 10 microns and 8 nanoamps respectively, comparable major element analyses on glass shards from numerous tephras ranging in age from 20 kyr to 600 kyr were obtained. The stratigraphic relationships between sets of samples (located mainly distal from source) and the close chemical similarity of some samples enabled a comprehensive tephrostratigraphy to be established. In particular, MT. CURL TEPHRA has a glass chemistry quite different from other stratigraphically separate tephras, establishing correlation of Mt. Curl Tephra to Whakamaru Ignimbrite. Likewise, other ignimbrite formations can be correlated to widespread airfall tephras, so establishing an absolute ignimbrite stratigraphy. Microprobe analysis of glass shards provides a method for indirectly determining the amount of hydration. For dated samples from a known weathering environment, the parameters controlling hydration can be quantified. For glass of uniform chemistry, shard size and porosity, ground temperature and groundwater movements are the most important parameters. No shards in the 63-250 micron size range have been found with more than 9% water, suggesting once this maximum is reached, glass rapidly alters to secondary products. Detailed knowledge of the volcanic history of the Taupo area, particularly since 50 kyrs B.P. allows the volcanic hazards of the region to be assessed. Fifteen major eruptions in 50 kyr gives a frequency of 1 in 3300 years, but the timing of individual events is not evenly spread throughout that time. Monitoring for volcanic Precursory events (not being undertaken at present) is essential to gauge the present and short-term future volcanic activity of the Taupo Volcanic Zone.</p>


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 457
Author(s):  
Christopher Gomez ◽  
Yoshinori Shinohara ◽  
Haruka Tsunetaka ◽  
Norifumi Hotta ◽  
Balazs Bradak ◽  
...  

In the aftermath of pyroclastic density current-dominated eruptions, lahars are the main geomorphic agent, but at the decadal scale, different sets of processes take place in the volcanic sediment cascade. At Unzen volcano, in the Gokurakudani gully, we investigated the geomorphologic evolution and how the topographic change and the sediment change over time is controlling this transition. For this purpose, a combination of LiDAR data, aerial photography and photogrammetry, ground penetrating radar and sediment grain size analysis was done. The results show choking zones and zones of enlargement of the gully, partly controlled by pre-eruption topography, but also by the overlapping patterns of the pyroclastic flow deposits of 1990–1995. The ground penetrating radar revealed that on top of the typical lahar structure at the bottom of the gully, side wall collapses were trapping finer sandy sediments formed in a relatively low-energy deposition environment. This shows that secondary processes are taking place in the sediment transport process, on top of lahar activity, but also that these temporary dams may be a source of sudden sediment and water release, leading to lahars. Finally, the sediments from the gully walls are being preferentially oozed out of the pyroclastic flow deposit, meaning that over longer period of time, there may be a lack of fines, increasing permeability and reducing internal pore pressure needed for lahar triggering. It also poses the important question of how much of a past event one can understand from outcrops in coarse heterometric material, as the deposit structure can remain, even after losing part of its fine material.


2021 ◽  
pp. 489-499
Author(s):  
Shuichiro Yokota ◽  
Tetsuya Fukuda ◽  
Akira Iwamatsu ◽  
Shin’ichi Uda ◽  
Takuya Wada ◽  
...  

Author(s):  
Christopher Gomez ◽  
Yoshinori Shinohara ◽  
Haruka Tsunetaka ◽  
Norifumi Hotta ◽  
Balazs Bradak ◽  
...  

In the aftermath of pyroclastic-flow &ndash;dominated eruptions, lahars are the main geomorphic agent, but at the decadal scale, different sets of processes take place in the volcanic sediment cascade. At Unzen Volcano, in the Gokurakudani Gully we investigated the geomorphologic evolution and how the topographic change and the sediment change over time is controlling this transition. For this purpose, a combination of LiDAR data, aerial photography and photogrammetry, Ground Penetrating Radar and sediment grain-size analysis was done. The results show chocking zones and zones of enlargement of the gully, partly controlled by pre-eruption topography, but also by the overlapping patterns of the pyroclastic flow deposits of 1990 &ndash; 1995. The Ground Penetrating Radar revealed that on top of the typical lahar structure at the bottom of the gully, side-wall collapses were trapping finer sandy sediments formed in relatively low-energy deposition environment. This shows that secondary processes are taking place in the sediment transport process, on top of lahar activity, but also that these temporary dams may be a source of sudden sediment and water release, leading to lahars. Finally, the sediments from the gully walls are being preferentially oozed out of the pyroclastic-flow deposit, meaning that over longer period of time, there may be a lack of fines, increasing permeability and reducing internal pore-pressure needed for lahar triggering. It also poses the important question of how much of a past-event one can understand from outcrops in coarse heterometric material, as the deposit structure can remain, even after loosing part of its fine material.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Duonian Xu ◽  
Jianguo Pan ◽  
Shuxin Pan ◽  
Bin Gao ◽  
Lu Yin ◽  
...  

Fused breccia tuff occurs globally, but its formation mechanism is very controversial. Volcanic reservoirs have developed at the bottom of the Permian Fengcheng Formation in the Wuxia region of the Junggar Basin, and here, the lithology is fused breccia tuff. The reservoir porosity is mainly vesicles, but the development and relative filling of the vesicles vary spatially, resulting in strong reservoir heterogeneity. Through core and thin section observations and structural analysis, and combined with reconstructions of the paleosedimentary environment, we discussed in detail the formation mechanism of the fused breccia tuff reservoir. Our conclusions are as follows. In the high-temperature and high-pressure environment of the deep crust, intermediate acidic lava containing volatile components rapidly rose to the earth’s surface along a fault. The volatile components in the lava foamed strongly and then exploded due to the sharp decline of pressure and temperature. A small part of the volcanic dust and pyroclastic material was erupted into the upper atmosphere. Most of the magma became magmatic pyroclast, vitric pyroclast, rock debris, dust, and other matter. This material was in a semimolten state and overflowed into a nearby low-lying lake. The extremely high-temperature pyroclastic flow quickly vaporized the water into high-pressure water vapor, which was squeezed into the pyroclastic flow and became mixed with other volatiles in the foam. On cooling, the pyroclastic material solidified into rock, and the vesicles were preserved. In a later period, due to strong tectonic movement, faults and fractures developed, surface water penetrated into the vesicles along the faults and fractures, and silica and other substances were deposited, filling the primary vesicles. To quantify the development and relative filling of vesicles, drilling parameters were used to establish different geologic models, and wave equation forward modeling was used to obtain a relationship between the development and filling of vesicles, and the seismic amplitude. The 3D seismic amplitude attributes were then extracted to predict the extent of the reservoir, yielding prediction results consistent with the drilling observations.


The Holocene ◽  
2021 ◽  
Vol 31 (5) ◽  
pp. 709-719
Author(s):  
Naoki Hayashi ◽  
Yudzuru Inoue ◽  
Tatsuichiro Kawano ◽  
Jun Inoue

Volcanic eruptions can have a significant influence on adjacent ecosystems; however, little is known about the long-term vegetation change related to eruptions. In this study, we examined phytolith records in paleosols at multiple sites in the southern Kyushu District, Japan, to assess the influence of the Kikai caldera eruption 7300 years ago on vegetation. Our results show the vegetational difference before and after the eruption in the study region. Specifically, in the area where the pyroclastic flows distributed more thickly, the original evergreen forest was replaced by Andropogoneae grasslands after the eruption, which has been dominating the landscape in this area for at least 900 years. By contrast, in areas only mildly affected by pyroclastic flows, despite the temporary replacement of forest by grassland, the forest developed and flourished within several hundreds of years of the eruption. This is because a large amount of pyroclastic flow would have devastated all of the vegetation, whereas smaller amounts would have left some untouched forest sites within refugia. Our findings suggest that the vegetation varied significantly depending on the amount of pyroclastic flow reaching the area, even within the pyroclastic flow distributed region.


Sign in / Sign up

Export Citation Format

Share Document