quantum communication complexity
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 9)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 21 (15&16) ◽  
pp. 1261-1273
Author(s):  
Aleksandrs Belovs ◽  
Arturo Castellanos ◽  
Francois Le Gall ◽  
Guillaume Malod ◽  
Alexander A. Sherstov

The classical communication complexity of testing closeness of discrete distributions has recently been studied by Andoni, Malkin and Nosatzki (ICALP'19). In this problem, two players each receive $t$ samples from one distribution over $[n]$, and the goal is to decide whether their two distributions are equal, or are $\epsilon$-far apart in the $l_1$-distance. In the present paper we show that the quantum communication complexity of this problem is $\tilde{O}(n/(t\epsilon^2))$ qubits when the distributions have low $l_2$-norm, which gives a quadratic improvement over the classical communication complexity obtained by Andoni, Malkin and Nosatzki. We also obtain a matching lower bound by using the pattern matrix method. Let us stress that the samples received by each of the parties are classical, and it is only communication between them that is quantum. Our results thus give one setting where quantum protocols overcome classical protocols for a testing problem with purely classical samples.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoqing Zhong ◽  
Feihu Xu ◽  
Hoi-Kwong Lo ◽  
Li Qian

AbstractQuantum communication complexity explores the minimum amount of communication required to achieve certain tasks using quantum states. One representative example is quantum fingerprinting, in which the minimum amount of communication could be exponentially smaller than the classical fingerprinting. Here, we propose a quantum fingerprinting protocol where coherent states and channel multiplexing are used, with simultaneous detection of signals carried by multiple channels. Compared with an existing coherent quantum fingerprinting protocol, our protocol could consistently reduce communication time and the amount of communication by orders of magnitude by increasing the number of channels. Our proposed protocol can even beat the classical limit without using superconducting-nanowire single photon detectors. We also report a proof-of-concept experimental demonstration with six wavelength channels to validate the advantage of our protocol in the amount of communication. The experimental results clearly prove that our protocol not only surpasses the best-known classical protocol, but also remarkably outperforms the existing coherent quantum fingerprinting protocol.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcin Wieśniak

AbstractQuantum correlations, in particular those, which enable to violate a Bell inequality, open a way to advantage in certain communication tasks. However, the main difficulty in harnessing quantumness is its fragility to, e.g, noise or loss of particles. We study the persistency of Bell correlations of GHZ based mixtures and Dicke states. For the former, we consider quantum communication complexity reduction (QCCR) scheme, and propose new Bell inequalities (BIs), which can be used in that scheme for higher persistency in the limit of large number of particles N. In case of Dicke states, we show that persistency can reach 0.482N, significantly more than reported in previous studies.


2021 ◽  
Author(s):  
Marcin Wieśniak

Abstract Quantum correlations, in particular those, which enable to violate a Bell inequality 1 , open a way to advantage in certain communication tasks. However, the main difficulty in harnessing quantumness is its fragility to, e.g, noise or loss of particles. We study the persistency of Bell correlations of GHZ based mixtures and Dicke states. For the former, we consider quantum communication complexity reduction (QCCR) scheme, and propose new Bell inequalities (BIs), which can be used in that scheme for higher persistency in the limit of large number of particles N. In case of Dicke states, we show that persistency can reach 0.482N, significantly more than reported in previous studies.


2019 ◽  
Vol 122 (12) ◽  
Author(s):  
Kejin Wei ◽  
Nora Tischler ◽  
Si-Ran Zhao ◽  
Yu-Huai Li ◽  
Juan Miguel Arrazola ◽  
...  

2018 ◽  
Vol 121 (15) ◽  
Author(s):  
Daniel Martínez ◽  
Armin Tavakoli ◽  
Mauricio Casanova ◽  
Gustavo Cañas ◽  
Breno Marques ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document