free radical chemistry
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 13)

H-INDEX

36
(FIVE YEARS 3)

Author(s):  
Krisztina Kovács ◽  
Tünde Tóth ◽  
László Wojnárovits

Abstract This study summarizes the results of scientific investigations on the removal of the three most-often used ß-blockers (atenolol, metoprolol and propranolol) by various advanced oxidation processes (AOP). The free radical chemistry, rate constants, degradation mechanism and elimination effectiveness of these compounds are discussed together with the technical details of experiments. In most of AOP the degradation is predominantly initiated by hydroxyl radicals. In sulfate radical anion based oxidation processes (SROP) both hydroxyl radical and sulfate radical anion greatly contributes to the degradation. The rate constants of reactions with these two radicals are in the 109–1010 M−1 s−1 range. The degradation products reflect ipso attack, hydroxylation on the aromatic ring and/or the amino moiety and cleavage of the side chain. Among AOP photocatalysis and SROP are the most effective for degradation of the three ß-blockers. The operating parameters have to be optimized to the most suitable effectiveness.


2021 ◽  
Vol 90 (1) ◽  
Author(s):  
Yifeng Wei ◽  
Yan Zhang

Sulfonates include diverse natural products and anthropogenic chemicals and are widespread in the environment. Many bacteria can degrade sulfonates and obtain sulfur, carbon, and energy for growth, playing important roles in the biogeochemical sulfur cycle. Cleavage of the inert sulfonate C–S bond involves a variety of enzymes, cofactors, and oxygen-dependent and oxygen-independent catalytic mechanisms. Sulfonate degradation by strictly anaerobic bacteria was recently found to involve C–S bond cleavage through O2-sensitive free radical chemistry, catalyzed by glycyl radical enzymes (GREs). The associated discoveries of new enzymes and metabolic pathways for sulfonate metabolism in diverse anaerobic bacteria have enriched our understanding of sulfonate chemistry in the anaerobic biosphere. An anaerobic environment of particular interest is the human gut microbiome, where sulfonate degradation by sulfate- and sulfite-reducing bacteria (SSRB) produces H2S, a process linked to certain chronic diseases and conditions. Expected final online publication date for the Annual Review of Biochemistry, Volume 90 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 22 (4) ◽  
pp. 1545
Author(s):  
Petre Ionita

Since the discovery in 1922 of 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl stable free radical (DPPH·), the chemistry of such open-shell compounds has developed continuously, allowing for both theoretical and practical advances in the free radical chemistry area. This review presents the important, general and modern aspects of the chemistry of hydrazyl free radicals and the science behind it.


2020 ◽  
Vol 59 (37) ◽  
pp. 16007-16012 ◽  
Author(s):  
Kerim Samedov ◽  
Yannic Heider ◽  
Yuanjing Cai ◽  
Philipp Willmes ◽  
Daniel Mühlhausen ◽  
...  

2020 ◽  
Vol 48 (10) ◽  
pp. 5294-5305
Author(s):  
Shweta Karambelkar ◽  
Shubha Udupa ◽  
Vykuntham Naga Gowthami ◽  
Sharmila Giliyaru Ramachandra ◽  
Ganduri Swapna ◽  
...  

Abstract The broad host range bacteriophage Mu employs a novel ‘methylcarbamoyl’ modification to protect its DNA from diverse restriction systems of its hosts. The DNA modification is catalyzed by a phage-encoded protein Mom, whose mechanism of action is a mystery. Here, we characterized the co-factor and metal-binding properties of Mom and provide a molecular mechanism to explain ‘methylcarbamoyl’ation of DNA by Mom. Computational analyses revealed a conserved GNAT (GCN5-related N-acetyltransferase) fold in Mom. We demonstrate that Mom binds to acetyl CoA and identify the active site. We discovered that Mom is an iron-binding protein, with loss of Fe2+/3+-binding associated with loss of DNA modification activity. The importance of Fe2+/3+ is highlighted by the colocalization of Fe2+/3+ with acetyl CoA within the Mom active site. Puzzlingly, acid-base mechanisms employed by >309,000 GNAT members identified so far, fail to support methylcarbamoylation of adenine using acetyl CoA. In contrast, free-radical chemistry catalyzed by transition metals like Fe2+/3+ can explain the seemingly challenging reaction, accomplished by collaboration between acetyl CoA and Fe2+/3+. Thus, binding to Fe2+/3+, a small but unprecedented step in the evolution of Mom, allows a giant chemical leap from ordinary acetylation to a novel methylcarbamoylation function, while conserving the overall protein architecture.


2019 ◽  
Vol 62 (11) ◽  
pp. 1423-1424
Author(s):  
Mukund P. Sibi ◽  
Chaozhong Li ◽  
Ning Jiao

Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2913 ◽  
Author(s):  
Julie Kirschner ◽  
Julien Paillard ◽  
Mariem Bouzrati-Zerelli ◽  
Jean-Michel Becht ◽  
Joachim E. Klee ◽  
...  

Diaryliodonium salts are well-established compounds in free radical chemistry and are already used as photoinitiators (free radical or cationic polymerization), but the presence of counter anions is a strong drawback. Indeed, a counter anion is always required (e.g., SbF6−) leading to potential toxicity issues or release of HF. In the present paper, counter anion-free and fluoride-free aryliodonium salts are proposed, that is, aryliodonium ylides (AY) are studied here as new and efficient additives for radical chemistry and an example is provided for the camphorquinone (CQ)/amine based photoinitiating systems (PISs) for the polymerization of thick (1.4 mm) and thin (20–13 µm) methacrylates under air and blue light irradiation. The newly proposed PISs, for example, CQ/amine/AY, presented excellent polymerization performances and good bleaching properties were obtained after polymerization. Real-time Fourier transform infrared spectroscopy (RT-FTIR) was used to monitor the photopolymerization profiles. The chemical mechanisms involved were investigated using electron spin resonance (ESR).


Sign in / Sign up

Export Citation Format

Share Document