scholarly journals On positive solutions of Liouville-Gelfand problem

2018 ◽  
Vol 99 (3) ◽  
pp. 78-91
Author(s):  
S. V. Kolosova ◽  
◽  
V. S. Lukhanin ◽  
M. V. Sidorov ◽  
◽  
...  
Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1606
Author(s):  
Shugui Kang ◽  
Youmin Lu ◽  
Wenying Feng

We study a two-point Boundary Value Problem depending on two parameters that represents a mathematical model arising from the combustion theory. Applying fixed point theorems for concave operators, we prove uniqueness, existence, upper, and lower bounds of positive solutions. In addition, we give an estimation for the value of λ* such that, for the parameter λ∈[λ*,λ*], there exist exactly three positive solutions. Numerical examples are presented to illustrate various cases. The results complement previous work on this problem.


1993 ◽  
Vol 18 (12) ◽  
pp. 2071-2106
Author(s):  
Philippe Clément ◽  
Raúl Manásevich ◽  
Enzo Mitidieri

2006 ◽  
Vol 11 (4) ◽  
pp. 323-329 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

This study concerns the existence of positive solutions to classes of boundary value problems of the form−∆u = g(x,u), x ∈ Ω,u(x) = 0, x ∈ ∂Ω,where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).


Author(s):  
Shaya Shakerian

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave–convex nonlinearities: [Formula: see text] where [Formula: see text] is a smooth bounded domain in [Formula: see text] containing [Formula: see text] in its interior, and [Formula: see text] with [Formula: see text] which may change sign in [Formula: see text]. We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for [Formula: see text] sufficiently small. The variational approach requires that [Formula: see text] [Formula: see text] [Formula: see text], and [Formula: see text], the latter being the best fractional Hardy constant on [Formula: see text].


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Hongjie Liu ◽  
Xiao Fu ◽  
Liangping Qi

We are concerned with the following nonlinear three-point fractional boundary value problem:D0+αut+λatft,ut=0,0<t<1,u0=0, andu1=βuη, where1<α≤2,0<β<1,0<η<1,D0+αis the standard Riemann-Liouville fractional derivative,at>0is continuous for0≤t≤1, andf≥0is continuous on0,1×0,∞. By using Krasnoesel'skii's fixed-point theorem and the corresponding Green function, we obtain some results for the existence of positive solutions. At the end of this paper, we give an example to illustrate our main results.


Sign in / Sign up

Export Citation Format

Share Document