scholarly journals OBTAINING THE EQUATIONS OF MOTION OF A MECHANICAL BODY THROUGH ANALYTICAL METHODS

Author(s):  
Armandt Erasmus

The aim of this paper is to obtain the equations of motion in n-dimensional space for the case where no external forces act on a mechanical system using analytical methods. One such method is known as Lagrangian Mechanics. Lagrangian Mechanics is founded on the principle of least action which states that the spontaneous change from one configuration to another of a dynamical system has a minimum action value if the law of conservation of energy holds.

Author(s):  
Jennifer Coopersmith

It is demonstrated how d’Alembert’s Principle can be used as the basis for a more general mechanics – Lagrangian Mechanics. How this leads to Hamilton’s Principle (the Principle of Least Action) is shown mathematically and in words. It is further explained why Lagrangian Mechanics is so general, why forces of constraint may be ignored, and how external conditions lead to “curved space.” Also, it is explained why the Lagrangian, L, has the form L = T − V (where T is the kinetic energy and V is the potential energy), and why T is in “quadratic form” (T = 1/2mv2). It is shown how Noether’s Theorem leads to a more fundamental definition of energy and links the conservation of energy to the homogeneity of time. The ingenious Lagrange multipliers are explained, and also generalized forces and generalized coordinates.


2008 ◽  
Vol 23 (04) ◽  
pp. 249-259 ◽  
Author(s):  
J. PONCE DE LEON

It is well known that, in the five-dimensional scenario of braneworld and space–time-mass theories, geodesic motion in 5D is observed to be non-geodesic in 4D. Usually, the discussion is purely geometric and based on the dimensional reduction of the geodesic equation in 5D, without any reference to the test particle whatsoever. In this work we obtain the equation of motion in 4D directly from the principle of least action. So our main thrust is not the geometry but the particle observed in 4D. A clear physical picture emerges from our work. Specifically, that the deviation from the geodesic motion in 4D is due to the variation of the rest mass of a particle, which is induced by the scalar field in the 5D metric and the explicit dependence of the space–time metric on the extra coordinate. Thus, the principle of least action not only leads to the correct equations of motion, but also provides a concrete physical meaning for a number of algebraic quantities appearing in the geometrical reduction of the geodesic equation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soon Ho Kim ◽  
Jong Won Kim ◽  
Hyun Chae Chung ◽  
MooYoung Choi

AbstractThe principle of least effort has been widely used to explain phenomena related to human behavior ranging from topics in language to those in social systems. It has precedence in the principle of least action from the Lagrangian formulation of classical mechanics. In this study, we present a model for interceptive human walking based on the least action principle. Taking inspiration from Lagrangian mechanics, a Lagrangian is defined as effort minus security, with two different specific mathematical forms. The resulting Euler–Lagrange equations are then solved to obtain the equations of motion. The model is validated using experimental data from a virtual reality crossing simulation with human participants. We thus conclude that the least action principle provides a useful tool in the study of interceptive walking.


Using the principle of least action the equations of motion and momentum conditions for elastic disturbances in any continuous medium are derived. Consideration of energy flux defines the form of the wave surface as the first negative pedal of the surface of phase velocities for elastic plane waves in the medium . A general method for obtaining the forms of these surfaces and an associated inverse surface is given and general conclusions about the propagation of disturbances are drawn.


The well-known theorem that the motion of any conservative dynamical system can be determined from the “Principle of Least Action” or “Hamilton’s Principle” was carried over into General Relativity-Theory in 1915 by Hilbert, who showed that the field-equations of gravitation can be deduced very simply from a minimum-principle. Hilbert generalised his ideas into the assertion that all physical happenings (gravitational electrical, etc.) in the universe are determined by a scalar “world-function” H, being, in fact, such as to annul the variation of the integral ∫∫∫∫H√(−g)dx 0 dx 1 dx 2 dx 3 where ( x 0 , x 1 , x 2 , x 3 ) are the generalised co-ordinates which specify place and time, and g is (in the usual notation of the relativity-theory) the determinant of the gravitational potentials g v q , which specify the metric by means of the equation dx 2 = ∑ p, q g vq dx v dx q . In Hilbert’s work, the variation of the above integral was supposed to be due to small changes in the g vq 's and in the electromagnetic potentials, regarded as functions of x 0 , x 1 , x 2 , x 3 .


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter shows how the Newtonian law of motion of a particle subject to a gradient force derived from a ‘potential energy’ can always be obtained from an extremal principle, or ‘principle of least action’. According to Newton’s first law, the trajectory representing the motion of a free particle between two points p1 and p2 is a straight line. In other words, out of all the possible paths between p1 and p2, the trajectory effectively followed by a free particle is the one that minimizes the length. However, even though the use of the principle of extremal length of the paths between two points gives the straight line joining the points, this does not mean that the straight-line path is traced with constant velocity in an inertial frame. Moreover, the trajectory describing the motion of a particle subject to a force is not uniform and rectilinear.


Author(s):  
Nicholas Manton ◽  
Nicholas Mee

Chapter 2 covers Newtonian dynamics, Newton’s law of gravitation and the motion of mutually gravitating bodies. The principle of least action is used to provide an alternative approach to Newton’s laws. Motion of several bodies is described. By analogy the same results are used to describe the motion of a single body in three dimensions. The equations of motion are solved for a harmonic oscillator potential. The general central potential is considered. The equations are solved for an attractive inverse square law force and shown to agree with Kepler’s laws of planetary motion. The Michell–Cavendish experiment to determine Newton’s gravitational constant is described. The centre of mass is defined and the motion of composite bodies described. The Kepler 2-body problem is solved and applied to binary stars. The positions of the five Lagrangian points are calculated. Energy conservation in mechanical systems is discussed, and friction and dissipation are considered.


2004 ◽  
Vol 127 (2) ◽  
pp. 208-212 ◽  
Author(s):  
Sejoong Oh ◽  
Karl Grosh ◽  
James R. Barber

A system of two meshing gears exhibits a stiffness that varies with the number of teeth in instantaneous contact and the location of the corresponding contact points. A classical Newtonian statement of the equations of motion leads to a solution that contradicts the fundamental principle of mechanics that the change in total energy in the system is equal to the work done by the external forces, unless the deformation of the teeth is taken into account in defining the direction of the instantaneous tooth interaction force. This paradox is avoided by using a Lagrange’s equations to derive the equations of motion, thus ensuring conservation of energy. This introduces nonlinear terms that are absent in the classical equations of motion. In particular, the step change in stiffness associated with the introduction of an additional tooth to contact implies a step change in strain energy and hence a corresponding step change in kinetic energy and rotational speed. The effect of these additional terms is examined by dynamic simulation, using a system of two involute spur gears as an example. It is shown that the two systems of equations give similar predictions at high rotational speeds, but they differ considerably at lower speeds. The results have implications for gear design, particularly for low speed gear sets.


1955 ◽  
Vol 51 (3) ◽  
pp. 469-475
Author(s):  
Edgar B. Schieldrop

1. A particle with mass m and coordinates x1x2, x3 relative to a set of rectangular axes fixed in Newtonian space is moving in a field of conservative forces with a potential energy V(x1, x2, x3) and a kinetic energyThe equations of motion, written(representing the three equations i = l, i = 2, i = 3 in a way to be used in this paper), constitute, as they stand, a sufficient condition in order to ensurein the sense that the Hamiltonian integral has a stationary value if the actual motion is compared with neighbouring motions with the same terminal positions and the same terminal values of the time as in the actual motion.


Sign in / Sign up

Export Citation Format

Share Document