viscoelastic parameters
Recently Published Documents


TOTAL DOCUMENTS

268
(FIVE YEARS 79)

H-INDEX

21
(FIVE YEARS 5)

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Jianfeng Wang ◽  
Yuke Liu ◽  
Chao Yang ◽  
Wenmin Jiang ◽  
Yun Li ◽  
...  

The viscoelastic behavior of minerals in shales is important in predicting the macroscale creep behavior of heterogeneous bulk shale. In this study, in situ indentation measurements of two major constitutive minerals (i.e., quartz and clay) in Longmaxi Formation shale from the Sichuan Basin, South China, were conducted using a nanoindentation technique and high-resolution optical microscope. Firstly, quartz and clay minerals were identified under an optical microscope based on their morphology, surface features, reflection characteristics, particle shapes, and indentation responses. Three viscoelastic models (i.e., three-element Voigt, Burger’s, and two-dashpot Kelvin models) were then used to fit the creep data for both minerals. Finally, the effects of peak load on the viscoelastic behavior of quartz and clay minerals were investigated. Our results show that the sizes of the residual imprints on clay minerals were larger than that of quartz for a specific peak load. Moreover, the initial creep rates and depths in clay minerals were higher than those in quartz. However, the creep rates of quartz and clay minerals displayed similar trends, which were independent of peak load. In addition, all three viscoelastic models produced good fits to the experimental data. However, due to the poor fit in the initial holding stage of the three-element Voigt model and instability of the two-dashpot Kelvin model, Burger’s model is best in obtaining the regression parameters. The regression results indicate that the viscoelastic parameters obtained by these models are associated with peak load, and that a relatively small peak load is more reliable for the determination of viscoelastic parameters. Furthermore, the regression values for the viscoelastic parameters of clay minerals were lower than those of quartz and the bulk shale, suggesting the former facilitates the viscoelastic deformation of shale. Our study provides a better understanding of the nanoscale viscoelastic properties of shale, which can be used to predict the time-dependent deformation of shale.


Author(s):  
Eugenia Stanisauskis ◽  
Paul Miles ◽  
William Oates

Auxetic foams exhibit novel mechanical properties due to their unique microstructure for improved energy-absorption and cavity expansion applications that have fascinated the scientific community since their inception. Given the advancements in material processing and performance of polymer open cell auxetic foams, there is a strong desire to fully understand the nonlinear rate-dependent deformation of these materials. The influence of nonlinear compressibility is introduced here along with relaxation effects to improve model predictions for different stretch rates and finite deformation regimes. The viscoelastic behavior of the material is analyzed by comparing fractional order and integer order calculus models. All results are statistically validated using maximum entropy methods to obtain Bayesian posterior densities for the hyperelastic, auxetic, and viscoelastic parameters. It is shown that fractional order viscoelasticity provides [Formula: see text]–[Formula: see text] improvement in prediction over integer order viscoelastic models when the model is calibrated at higher stretch rates where viscoelasticity is more significant.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1266
Author(s):  
Kang Wu ◽  
Jianzhong Lou ◽  
Chen Li ◽  
Wei Luo ◽  
Congcong Li ◽  
...  

The fragile structure of a rootstock predisposes the stem to mechanical damage during grafting. Thus, it is necessary to take into account the rootstock’s rheological properties under mechanical compression when designing a clamping mechanism. This study focused on cucurbit, a typical rootstock for watermelon grafting. Firstly, we adopted a four-element Burgers model to analyze viscoelastic behavior and deformation characteristics of the rootstock, then conducted creep tests to obtain the parameters of the viscoelastic model. Next, we developed a model for the rootstock during holding based on viscoelastic parameters, loading force and contact time. Moreover, we evaluated the effect of various loading forces and test velocities on creep deformation to reveal the least damage on the rootstock. Results showed that the influence of loading force on the creep deformation was greater than test velocity. Finally, the holding test indicated that the clamping mechanism with silicone rubber can effectively prevent the damage to the stem. Specifically, the loading force should be controlled below 4 N to reduce the associated damage. Taken together, our findings provide a theoretical basis for analyzing the holding damage mechanism during watermelon grafting.


2021 ◽  
pp. 84-89
Author(s):  
Lachhel Belhassen ◽  
Sana Koubaa ◽  
Mondher Wali ◽  
Fakhreddine Dammak

2021 ◽  
Vol 8 ◽  
Author(s):  
Lukas Infanger ◽  
Christoph Dibiasi ◽  
Eva Schaden ◽  
Stefan Ulbing ◽  
Marion Wiegele ◽  
...  

Background: Viscoelastic coagulation testing has been suggested to help manage coagulopathy in critically ill patients with COVID-19. However, results from different viscoelastic devices are not readily comparable. ClotPro® is a novel thromboelastometry analyzer offering a wider range of commercially available assays.Methods: We compared the results from ClotPro with results from the well-established ROTEM® Delta device and conventional coagulation tests in critically ill patients with COVID-19.Results: Viscoelastic parameters indicated the presence of a potentially hypercoagulable state in the majority of patients. In up to 95 paired measurements, we found strong correlations between several parameters routinely used in clinical practice: (i) EX test vs. EXTEM CT, A5, A10, MCF, (ii) IN test vs. INTEM A5, A10, MCF, and (iii) FIB test vs. FIBTEM A5, A10, MCF (all R > 0.7 and p < 0.001). In contrast, IN test CT vs. INTEM CT showed only a moderate correlation (R = 0.53 and p < 0.001). Clot strength parameters of both devices exhibited strong correlations with platelet counts and fibrinogen levels (all R > 0.7 and p < 0.001). Divergent correlations of intrinsically activated assays with aPTT and anti-factor Xa activity were visible. Regarding absolute differences of test results, considerable delta occurred in CT, CFT, and clot strength parameters (all p < 0.001) between both devices.Conclusions: Several parameters obtained by ClotPro show strong correlations with ROTEM Delta. Due to weak correlations of intrinsically activated clotting times and considerable absolute differences in a number of parameters, our findings underline the need for device-specific algorithms in this patient cohort.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 208
Author(s):  
Alexandra Croitoriu ◽  
Loredana E. Nita ◽  
Aurica P. Chiriac ◽  
Alina G. Rusu ◽  
Maria Bercea

In the last years, physical hydrogels have been widely studied due to the characteristics of these structures, respectively the non−covalent interactions and the absence of other necessary components for the cross−linking processes. Low molecular weight gelators are a class of small molecules which form higher ordered structures through hydrogen bonding and π−π interactions. In this context it is known that the formation of hydrogels based on FMOC−amino acids is determined by the primary structures of amino acids and the secondary structure arrangement (alpha−helix or beta−sheet motifs). The present study aimed to obtain supramolecular gels through co−assembly phenomenon using FMOC−amino acids as low molecular weight gelators. The stability of the new structures was evaluated by the vial inversion test, while FTIR spectra put into evidence the interaction between the compounds. The gel−like structure is evidenced by viscoelastic parameters in oscillatory shear conditions. SEM microscopy was used to obtain the visual insight into the morphology of the physical hydrogel network while DLS measurements highlighted the sol−gel transition. The molecular arrangement of gels was determined by circular dichroism, fluorescence and UV–Vis spectroscopy.


2021 ◽  
Vol 17 (3) ◽  
pp. 85-96
Author(s):  
M. V. Kruchinina ◽  
E. V. Kashtanova ◽  
Ya. V. Polonskaya ◽  
A. A. Gromov ◽  
V. A. Baum

The aim of the work is to investigate the parameters of hemostasis, electrical and viscoelastic parameters of red blood cells and markers of inflammation in persons suffering from arterial hypertension to determine the possibility of assessing the severity of hemorheological disorders.Material and methods. The study included 203 patients (156 patients with arterial hypertension and 47 patients without hypertension). The parameters of hemostasis, markers of inflammation and red blood cells were studied.Results. The possibilities of assessing the severity of hemorheological disorders in patients with arterial hypertension, based on the study of parameters: hemostasis, erythrocytes (by dielectrophoresis). In patients with hypertension, as the risk of venous thromboembolic complications increased, acceleration of leukocyte-platelet aggregation, increased fibrinogen level and decreased activity of XII-dependent fibrinolysis, which creates prerequisites for rheological disturbances, were revealed. The most accurate prediction of result according to severity of hemorheological disorders (differentiation moderate and expressed disorders from the lungs) is provided by such indicators of electric and viscoelastic parameters of erythrocytes, as the polarizability of red blood cells at a frequency of 106 Hz (AUC = 0,750 in), the speed of movement of cells to the electrodes (AUC = 0,746), deformation degree at a frequency of 5 × 105 Hz (AUC = 0,733), conductivity cell (AUC = 0,730), the generalized viscosity (AUC = 0,729), the index of aggregation of erythrocytes (AUC = 0,716), graduation according to the degree of strain at all frequencies (AUC = 0,716), generalized stiffness (AUC = 0,714), the deformation amplitude at frequency of 106 Hz (AUC = 0,711), the capacity of the cells (AUC = 0,693). The measure of specificity for different indices of erythrocytes is 75.4–99,3 % and a sensitivity of 84.1–98.6 %.Conclusions. The study of the parameters of hemostasis, markers of inflammation, red blood cells allowed us to determine the key indicators for assessing the severity of hemorheological disorders in patients with arterial hypertension. The work was carried out within the framework of the budgetary theme under the State Assignment No. 121090800102-4.


2021 ◽  
Author(s):  
ANDREW MATEJUNAS ◽  
LLOYD FLETCHER ◽  
LESLIE LAMBERSON

Polymer matrix composites often exhibit a strong strain rate dependance in their mechanical response. In many of these materials, the viscoelastic behavior of the polymer matrix drives the rate dependence in the composite, however identifying these parameters at high strain rate presents a significant challenge. Common high-rate material characterization techniques such as the Kolsky (split-Hopkinson pressure) bar require a large test matrix across a range of strain rates. Kolsky bars also struggle to identify constitutive parameters prior to the yield due to inertial effects and the finite period of time required to reach force equilibrium. The Image Based Inertial Impact (IBII) test has been successfully used to identify linear elastic constitutive behavior of composites at high strain rates, but, to date, has only been used to extract constitutive properties at a single nominal strain rate in each test. Here, we propose an adaptation of the IBII test to identify viscoelastic parameters at high strain rates using full-field displacement data and the nonlinear virtual fields method (VFM). We validate the technique with finite element simulations of an IBII test on a model viscoelastic material that is characterized with a Prony series formulation of the generalized Maxwell model. The nonlinear VFM is then used to extract the Prony pairs for dynamic moduli and time constants from the full-field deformation data. The nonlinear viscoelastic identification allows for characterization of the evolution of mechanical response across a range of strain rates in a single experiment. The experimentally identified viscoelastic parameters of the matrix can then be used to predict the behavior of the composite at high strain rates. This approach will also be validated experimentally using a single-stage gas-gun to characterize the high-rate viscoelastic response of PMMA.


Sign in / Sign up

Export Citation Format

Share Document