quantitative morphology
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 11)

H-INDEX

40
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Saurabh Bhardwaj ◽  
Toney Fernandez ◽  
Simon Gross ◽  
Michael Withford ◽  
Michael Steel

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 2) ◽  
Author(s):  
Junjie Zou ◽  
Honglin He ◽  
Yusuke Yokoyama ◽  
Adam D. Sproson ◽  
Yoshiki Shirahama ◽  
...  

Abstract The quantitative morphology of bedrock fault surfaces combined with aerial surveys and field identification is a useful approach to identify paleoearthquakes, obtain coseismic slips, and evaluate the seismogenic capacity of active faults in bedrock areas where traditional trenching methods are not applicable. Here, we report a case study of the Jiaocheng Fault (JCF) in the Shanxi Rift, China. Although several studies have been conducted on the JCF, its coseismic slip history and seismogenic capacity are still unclear. To address these problems, we investigated two bedrock fault surfaces, Sixicun (SXC) and Shanglanzhen (SLZ), on the JCF’s northern segment using quantitative morphological analysis together with aerial and field surveys. Quantitative fractal analysis based on the isotropic empirical variogram and moving window shows that both bedrock fault surfaces have the characteristics of vertical segmentation, which is likely due to periodic earthquakes, the coseismic slip of which can be determined by the height of the segments. Three seismic events at SXC, with a coseismic vertical slip of 1.74, 1.65, and 1.99 m, and three seismic events at SLZ, with a coseismic vertical slip of 1.32, 2.35, and 1.88 m, are identified. Compared with the previous studies, these three seismic events may occur in the Holocene, but it requires absolute dating ages to support, which is also the focus of our future work. Considering the seismologic capability (M>7.5) and the relationship between the recurrence interval of ~2.6 kyr and elapsed time of more than 3 kyr, the seismic hazard of the northern and middle segments of the JCF requires immediate attention.


Zootaxa ◽  
2020 ◽  
Vol 4894 (4) ◽  
pp. 561-593
Author(s):  
JONAS PEREIRA DE SOUZA-FILHO ◽  
EDSON GUILHERME ◽  
PETER MANN DE TOLEDO ◽  
ISMAR DE SOUZA CARVALHO ◽  
FRANCISCO RICARDO NEGRI ◽  
...  

The Solimões Formation (Eocene-Pliocene) is a well-known geological unit due to the great diversity of crocodylian species. Here we describe a new species of Melanosuchus, M. latrubessei sp. nov., from the Talismã locality, state of Amazonas, from the Upper Miocene of the Solimões Formation (Solimões Basin, Brazil). A new phylogenetic inference focused on Caimaninae is provided and the different evolutionary scenarios involving this new species are discussed. In addition, quantitative morphology studies are carried out and comments regarding the paleoecology aspects of this new species are made. M. latrubessei represents a medium-sized generalist predator, being proportional to the medium-sized M. niger. This new species inhabited the drainages of the Solimões Formation and was ecologically related to other taxa of crocodylians during the proto-Amazon Miocene. The evolutionary advantages of Melanosuchus genus are discussed to better understand the biogeographical occurrence of M. niger in South America, a species which survives to this day in contrast to several other species that became extinct during the Miocene-Pliocene periods. The extinction of the Miocene-Pliocene crocodylian taxa of the Solimões Formation, including Melanosuchus latrubessei, seems to be directly related with the uplift of the northern portions of the Andes, which generated significantly changes in drainages and Amazon paleoenvironments. 


2020 ◽  
Vol 498 (3) ◽  
pp. 4533-4549
Author(s):  
Philipp Busch ◽  
Marius B Eide ◽  
Benedetta Ciardi ◽  
Koki Kakiichi

ABSTRACT We introduce a versatile and spatially resolved morphological characterization of binary fields, rooted in the opening transform of mathematical morphology. We subsequently apply it to the thresholded ionization field in simulations of cosmic reionization and study the morphology of ionized regions. We find that an ionized volume element typically resides in an ionized region with radius ∼8 h−1 cMpc at the midpoint of reionization (z ≈ 7.5) and follow the bubble size distribution even beyond the overlap phase. We find that percolation of the fully ionized component sets in when 25 per cent of the universe is ionized and that the resulting infinite cluster incorporates all ionized regions above ∼8 h−1 cMpc. We also quantify the clustering of ionized regions of varying radius with respect to matter and on small scales detect the formation of superbubbles in the overlap phase. On large scales, we quantify the bias values of the centres of ionized and neutral regions of different sizes and not only show that the largest ones at the high-point of reionization can reach b ≈ 30, but also that early small ionized regions are positively correlated with matter and large neutral regions and late small ionized regions are heavily antibiased with respect to matter, down to b ≲ −20.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Rachida Yakoubi ◽  
Astrid Rollenhagen ◽  
Marec von Lehe ◽  
Dorothea Miller ◽  
Bernd Walkenfort ◽  
...  

Synapses are fundamental building blocks controlling and modulating the ‘behavior’ of brain networks. How their structural composition, most notably their quantitative morphology underlie their computational properties remains rather unclear, particularly in humans. Here, excitatory synaptic boutons (SBs) in layer 4 (L4) of the temporal lobe neocortex (TLN) were quantitatively investigated. Biopsies from epilepsy surgery were used for fine-scale and tomographic electron microscopy (EM) to generate 3D-reconstructions of SBs. Particularly, the size of active zones (AZs) and that of the three functionally defined pools of synaptic vesicles (SVs) were quantified. SBs were comparatively small (~2.50 μm2), with a single AZ (~0.13 µm2); preferentially established on spines. SBs had a total pool of ~1800 SVs with strikingly large readily releasable (~20), recycling (~80) and resting pools (~850). Thus, human L4 SBs may act as ‘amplifiers’ of signals from the sensory periphery, integrate, synchronize and modulate intra- and extracortical synaptic activity.


2019 ◽  
Author(s):  
Rachida Yakoubi ◽  
Astrid Rollenhagen ◽  
Marec von Lehe ◽  
Dorothea Miller ◽  
Bernd Walkenfort ◽  
...  

AbstractSynapses are fundamental building blocks that control and modulate the ‘behavior’ of brain networks. How their structural composition, most notably their quantitative morphology underlies their computational properties remains rather unclear, particularly in humans. Here, excitatory synaptic boutons (SBs) in layer 4 (L4) of the temporal lobe neocortex (TLN) were quantitatively investigated.Biopsies from epilepsy surgery were used for fine-scale and tomographic electron microscopy to generate 3D-reconstructions of SBs. Particularly, the size of active zones (AZs) and of the three functionally defined pools of synaptic vesicles (SVs) were quantified.SBs were comparably small (∼2.50 μm2), with a single AZ (∼0.13 µm2) and preferentially established on spines. SBs had a total pool of ∼1800SVs with strikingly large readily releasable (∼ 20), recycling (∼ 80) and resting pools (∼850).Thus, human L4 SBs may act as ‘amplifiers’ of signals from the sensory periphery and integrate, synchronize and modulate intra- and extra-cortical synaptic activity.


Sign in / Sign up

Export Citation Format

Share Document