geologic fractures
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Serena Formenti ◽  
Alexander Peace ◽  
John Waldron ◽  
Carolyn Eyles ◽  
Rebecca Lee

<p>The Niagara Escarpment is a geological feature comprised of highly fractured Ordovician and Silurian shales and carbonates stretching through southern Ontario and parts of the north-eastern United States. Differential erosion of the shale and carbonate strata has generated a steep cliff face bisecting the city of Hamilton, Ontario. Fractures occur throughout the cliff face and result in the formation of loose blocks of rock that are subject to erosion through rockfalls. This presents structural stability issues and an associated geohazard, which is of particular concern due to the proximity of the escarpment to city infrastructure. Previous work has alluded towards the role of geologic fractures in controlling erosion and stability of the Niagara Escarpment, but the causal mechanisms and extent to which these processes operate remains unclear. As such, the aim of this study is to quantify and analyse fracture networks using a combined field and numerical modelling-based approach to understand the distribution and nature of fractures throughout the escarpment, their connectivity, fluid flow properties, and relationship to structural stability. The location, orientation, and aperture of fractures were systematically quantified and documented around Hamilton. Data were plotted and analysed using the software Orient to identify clusters representative of fracture sets and to calculate average fracture set orientations and the respective confidence intervals. Three primary sets of geological fractures were identified including: 1) a near-vertical bedding confined set oriented north-south, 2) a near-vertical bedding confined set oriented east-west and 3) sedimentary bedding planes which have facilitated fracture migration and controlled resultant fracture geometry. Discrete fracture network modelling of these fracture sets in MOVE highlights their high degree of connectivity and indicates that the distribution and nature of these discontinuities are predominant controls on the locations and sizes of rock fragments generated on the cliff face resulting in rockfalls. Moreover, fracture-controlled porosity is a significant contributor to fluid flow throughout the escarpment. We conclude that geologic fractures present a first-order control on the stability of the Niagara Escarpment near Hamilton.</p>


2020 ◽  
Vol 205 ◽  
pp. 03004
Author(s):  
Jinhyun Choo ◽  
Fan Fei

Geologic fractures such as joints and faults are central to many problems in energy geotechnics. Notable examples include hydraulic fracturing, injection-induced earthquakes, and geologic carbon storage. Nevertheless, our current capabilities for simulating the development and evolution of geologic fractures in these problems are still insufficient in terms of efficiency and accuracy. Recently, phase-field modeling has emerged as an efficient numerical method for fracture simulation which does not require any algorithm for tracking the geometry of fracture. However, existing phase-field models of fracture neglected two distinct characteristics of geologic fractures, namely, the pressure-dependence and frictional contact. To overcome these limitations, new phase-field models have been developed and described in this paper. The new phase-field models are demonstrably capable of simulating pressure-dependent, frictional fractures propagating in arbitrary directions, which is a notoriously challenging task.


Geophysics ◽  
2007 ◽  
Vol 72 (4) ◽  
pp. E135-E147 ◽  
Author(s):  
Romain Prioul ◽  
Adam Donald ◽  
Randy Koepsell ◽  
Zakariae El Marzouki ◽  
Tom Bratton

We develop a methodology to model and interpret borehole dipole sonic anisotropy related to the effect of geologic fractures, using a forward-modeling approach. We use a classical excess-compliance fracture model that relies on the orientation of the individual fractures, the elastic properties of the host rock, and the normal and tangential fracture-compliance parameters. Orientations of individual fractures are extracted from borehole-image log analysis. The model is validated using borehole-resistivity image and sonic logs in a gas-sand reservoir over a [Formula: see text] (50 m) vertical interval of a well. Significant amounts of sonic anisotropy are observed at three zones, with a fast-shear azimuth (FSA) exhibiting 60° of variation and slowness difference between 2% and 16%. Numerous quasivertical fractures with varying dip azimuths are identified on the image log at the locations of strong sonic anisotropy. The maximum horizontal-stress direction, given by breakouts and drilling-induced fractures, is shown not to be aligned with the strike of natural fractures. We show that using just two adjustable fracture-compliance parameters, one fornatural fractures and one for drilling-induced fractures, is an excel-lent first-order approximation to explain the fracture-induced anisotropy response over a depth interval of [Formula: see text]. Given the presence of gas and the absence of clay filling within the fractures, we assumed equal normal and tangential compliances. The two inverted normal compliances are [Formula: see text] and [Formula: see text]. Predicted FSA matches measured FSA over [Formula: see text] (40 m) of the [Formula: see text] (50 m) studied interval. Predicted slowness anisotropy matches the overall variation and measured values of anisotropy for two of the three strong anisotropy zones. Analysis of the symmetries of the modeled anisotropic response shows that the medium is mostly a horizontal transverse isotropic medium, with small azimuthal variation of the symmetry axis. Analysis of each independent fracture type shows that the anisotropy is mainly driven by open or partially healed fractures, but also consistent with stress-related, drilling-induced fractures. Therefore, the measured sonic anisotropy is caused by the combination of stress and fracture effects where the predominance of one mechanism over the other is depth-dependent. This method provides a consistent approach to data interpretation by integrating borehole image and sonic logs that probe the formation at different depths of investigation around the borehole.


Sign in / Sign up

Export Citation Format

Share Document