oxidize glutathione
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
K. B. Csomó ◽  
B. Alasztics B ◽  
A. P. Sándor ◽  
A. A. Belik ◽  
G. Varga ◽  
...  

AbstractCytochrome c is a member of the respiratory chain of the mitochondria. Non-membrane-bound (free) cytochrome c can be reduced by gluthatione as well as ascorbic acid. We investigated the effect of pH, Ca2+, Mg2+ and anionic phospholipids on the reduction of cytochrome c by glutathione.The reduction of cytochrome c by thiols was measured using photometry. Mitochondrial oxygen consumption was detected by use of oxygen electrode. Glutathione does not reduce cytochrome c at pH = 7.0 in the absence of Ca2+ and Mg2+. The reduction of cytochrome c by glutathione is inhibited by anionic lipids, especially cardiolipin. The typical conditions of apoptosis—elevated pH, Ca2+ level and Mg2+—increases the reduction of cytochrome c. Glutathione (5 mM) causes increased mitochondrial O2 consumption at pH = 8.0, in the presence of ADP either 1 mM Mg2+ or 1 mM Ca2+. Our results suggest that membrane bound cyt c does not oxidize glutathione. Free (not membrane bound) cytochrome c can oxidize glutathione. In mitochondria, O2 is depleted only in the presence of ADP, so the O2 depletion observed in the presence of glutathione can be related to the respiratory chain. Decreased glutathione levels play a role in apoptosis. Therefore, membrane unbound cyt c can contribute to apoptosis by oxidation of glutathione.



2003 ◽  
Vol 31 (6) ◽  
pp. 1337-1339 ◽  
Author(s):  
C.M. Jones ◽  
A. Lawrence ◽  
P. Wardman ◽  
M.J. Burkitt

Superoxide radicals are produced in trace amounts by the mitochondrial respiratory chain. Most are removed rapidly by superoxide dismutase in the matrix. Superoxide is also known to react with glutathione. Reported values of the rate constant for this reaction range from 102 to in excess of 105 M−1·s−1. The magnitude of this rate constant has important physiological implications because, if it is at the upper end of the reported range, a significant proportion of mitochondrial superoxide will evade removal by superoxide dismutase, and will oxidize glutathione to the potentially harmful glutathionyl radical. Using EPR spectroscopy to monitor competition between glutathione and the spin trap 5,5-dimethyl-1-pyrroline N-oxide for reaction with superoxide, we have estimated that the rate constant for the reaction between superoxide and glutathione is only ~200 M−1·s−1. Hence superoxide dismutase will always out-compete glutathione for reaction with the superoxide radical, thereby preventing formation of the glutathionyl radical.





1990 ◽  
Vol 258 (1) ◽  
pp. C115-C121 ◽  
Author(s):  
M. B. Grisham ◽  
E. M. Ryan

Salivary peroxidase and to a lesser extent myeloperoxidase are present in significant concentrations in saliva and catalyze the oxidation of thiocyanate anion (SCN-) by H2O2 to yield the potent oxidants hypothiocyanous acid (HOSCN) and its conjugate base hypothiocyanite anion (OSCN-). The objective of this study was to characterize the cytotoxic potential of peroxidase-generated HOSCN/OSCN- toward human erythrocytes. We found that HOSCN/OSCN- (0.25 mM) generated by the peroxidase-H2O2-SCN- system caused significant hemolysis at pH 6.0 but not at pH 6.5, 7.0, or 7.4. Erythrocyte hemoglobin (OxyHb) was oxidized to methemoglobin (MetHb) at all pH values tested; however, the rate of MetHb formation was dramatically increased at low pH and was not affected by inosine hexaphosphate, suggesting that hemoglobin was oxidized primarily by HOSCN. Concurrent with oxidation of hemoglobin (Hb), there was a pH-dependent consumption of HOSCN/OSCN- with more of the oxidant consumed at pH 6.0 compared with pH 6.5, 7.0, or 7.4. The enhanced oxidation of Hb at acidic pH was not due simply to increased membrane permeability by the uncharged species (HOSCN), since both erythrocyte lysate Hb and purified Hb were oxidized to the same extent at low pH as were intact erythrocytes. It is concluded that both OSCN- and HOSCN enter human erythrocytes where the protonated oxidant (HOSCN) mediates hemolysis and oxidizes OxyHb to MetHb, whereas both HOSCN and OSCN- oxidize glutathione (GSH). These data suggest that the extracellular pH may play an important role in modulating the cytotoxic properties of salivary oxidants.



Sign in / Sign up

Export Citation Format

Share Document