larval life history
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 6)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
Alon Silberbush

Abstract Several species of mosquitoes respond to the presence of kairomones released by larvivorous predators during oviposition habitat selection and larval development. These responses may differ among mosquito species and do not always correlate with larval survival. This study examined the responses of the mosquito Culiseta longiareolata Macquart (Diptera: Culicidae) to kairomones released by three species of fish, Gambusia affinis (Cyprinodontiformes: Poeciliidae), Aphanius mento (Cyprinodontiformes: Cyprinodontidae) and Garra rufa (Cypriniformes: Cyprinidae) during oviposition. In addition, the study examined the effects of kairomones released by Gm. affinis on larval development and survival. Results show that ovipositing female avoided cues from the two larvivorous fish species but not the algivorous Gr. rufa. In addition, developing larvae metamorphosed slower and showed increased mortality when exposed to fish-released kairomones. Culiseta longiareolata larvae are known as dominant competitors, and the straightforward responses of both larvae and adult female to fish-released kairomones may be explained by the lack of additional sources of larval stress other than the presence of predators.


2020 ◽  
Author(s):  
Alon Silberbush

AbstractSeveral species of mosquitoes respond to the presence of kairomones released by larval predators during oviposition habitat selection and larval development. These responses may differ among mosquito species and do not always correlate with larval survival. This study examined the responses of the mosquito Culiseta longiareolata Macquart to kairomones released by three species of fish during oviposition, Gambusia affinis Baird and Girard, Aphanius mento Heckel and Garra rufa Heckel. In addition, the study examined the effects of kairomones released by G. affinis on larval development. Results show that ovipositing female avoided cues from larvivorous, but not algivorous fish. In addition, developing larvae metamorphosed slower and showed increased mortality when exposed to fish-released kairomones. Results suggest that the responses of this mosquito species to fish-released kairomones may be explained by its competitive ability.


2020 ◽  
Author(s):  
Kurt Steinwascher

AbstractMale and female mosquito larvae compete for different subsets of the yeast food resource in laboratory microcosms. Males compete more intensely with males and females with females. The amount and timing of food inputs alters both growth and competition, but the effects are different between sexes. Increased density increases competition among males. Among females, density operates primarily by changing the food/larva or total food; this affects competition in some interactions and growth in others. Food added earlier in the life span contributes more to mass than the same quantity added later. After a period of starvation larvae appear to use some of the subsequent food input to rebuild physiological reserves in addition to building mass. The timing of pupation is affected by the independent factors and competition, but not in the same way for the two sexes, and not in the same way as mass at pupation for the two sexes. There is an effect of density on the timing of pupation for females independent of competition or changes in food/larva or total food. Male and female larvae have different larval life history strategies. Males grow quickly to a minimum size, then pupate, depending on the amount of food available. Males that do not grow quickly enough may delay pupation further to grow larger, resulting in a bimodal distribution of sizes and ages. Males appear to have a maximum size determined by the early food level. Females grow faster than males and grow larger than males on the same food inputs. Females affect the growth and competition among males by manipulating the number of particles in the microcosm through changes in feeding behavior. Mosquito larvae appear to have evolved to survive periods of starvation and take advantage of intermittent inputs of food into containers.


2020 ◽  
Vol 6 (2) ◽  
pp. 133-140
Author(s):  
D. Dzepe ◽  
P. Nana ◽  
A. Fotso ◽  
T. Tchuinkam ◽  
R. Djouaka

Performance and body composition of insect larvae depend on quality and quantity of their diet, and on biotic factors such as larval density. Experiments were undertaken to assess the effects of larval density, substrate moisture content and feedstock ratio on larval life history parameters of black soldier fly (BSF) in the laboratory. Four-day-old larvae were separately reared under six different densities (1, 2, 4, 6, 8 and 10 larvae/cm2) and at five substrate moisture content levels (40, 50, 60, 70 and 80%) obtained by moistening feed with fresh water. Five feedstock ratios of 25, 50, 100, 150 and 200 mg of feed per larva per day were also tested. Each treatment had four replicates and used commercial chicken feed as substrate. Results showed that individual larval feed reduction, wet weight, survival rate, body size and body thickness had a negative correlation with rearing densities, while larval development time correlated positively. The increase in substrate moisture content has significantly affected the larval feed reduction, wet weight, development time, body size and body thickness of the larvae. On the other hand, the survival rate was not significantly affected. The larvae subjected to diet 150 mg/larva/day showed a highest individual wet weight (0.19±0.003 g), body size (20.55±0.335 mm) and body thickness (4.982±0.081 mm). Their recorded development time was relatively short (11.25±0.500 days), compared to the other. The larval survival rate was not significantly affected by the feedstock ratio. This study indicates that larval life history parameters of BSF are influenced by the rearing conditions.


2019 ◽  
Vol 9 (19) ◽  
pp. 11434-11447 ◽  
Author(s):  
Christine Ewers‐Saucedo ◽  
Paula Pappalardo

2018 ◽  
Vol 17 (2) ◽  
pp. 221-229
Author(s):  
James A. Erdmann ◽  
Cody D. Godwin ◽  
Martha R. Villalba-Guerra ◽  
D. Cooper Campbell ◽  
Jordan Donini ◽  
...  

Herpetologica ◽  
2017 ◽  
Vol 73 (3) ◽  
pp. 252-258 ◽  
Author(s):  
Christopher K. Beachy ◽  
Travis J. Ryan ◽  
Ronald M. Bonett

2016 ◽  
Vol 64 (2) ◽  
pp. 100 ◽  
Author(s):  
Amanda B. Edworthy

Blood-sucking fly larvae are widespread parasites of nestling birds, but in many systems we lack knowledge of their basic biology. This study reports the first observation of an endemic Tasmanian fly species, Passeromyia longicornis (Diptera : Muscidae), parasitising the forty-spotted pardalote (Pardalotus quadragintus), another Tasmanian endemic. Because the forty-spotted pardalote is an endangered and declining songbird, P. longicornis is a species of interest to conservation biologists. Its larval form is an obligate, subcutaneous parasite of nestling birds, but before this study, there were just two published records of the species infesting avian hosts, and little known about its ecology or life cycle. This study documented hosts, prevalence, and larval life history of P. longicornis by locating and monitoring nests and ectoparasites of the forest bird community in south-eastern Tasmania. I also reared P. longicornis larvae in captivity to determine the length of the pupal stage in relationship to ambient temperature. Hosts of P. longicornis included forty-spotted pardalotes (87% prevalence across nests), striated pardalotes (Pardalotus striatus) (88% prevalence), and New Holland honeyeaters (Phylidonyris novaehollandiae) (11% prevalence). Both pardalote species were new host records. P. longicornis larvae burrowed under the skin of nestlings where they developed for 4–7 days, feeding on nestling blood. When fully grown, larvae dropped into the surrounding nest material and formed pupae. Length of the pupal stage was 14–21 days, and declined with increasing ambient temperature. Median parasite abundance was 15 larvae in infested forty-spotted pardalote nests and 11 larvae in infested striated pardalote nests. Nestling mortality was frequently associated with ectoparasite presence. This study provides the first survey of P. longicornis hosts, prevalence and life cycle, and shows that this species is likely a major player in the ecology of pardalotes, and possibly other forest bird species in Tasmania.


Ecology ◽  
2015 ◽  
Vol 96 (4) ◽  
pp. 1128-1138 ◽  
Author(s):  
Dirk J. Mikolajewski ◽  
Marjan De Block ◽  
Robby Stoks

Sign in / Sign up

Export Citation Format

Share Document