scanning systems
Recently Published Documents


TOTAL DOCUMENTS

353
(FIVE YEARS 72)

H-INDEX

18
(FIVE YEARS 5)

2021 ◽  
pp. 1-15
Author(s):  
Milan Ćurković ◽  
Andrijana Ćurković ◽  
Damir Vučina

Image binarization is one of the fundamental methods in image processing and it is mainly used as a preprocessing for other methods in image processing. We present an image binarization method with the primary purpose to find markers such as those used in mobile 3D scanning systems. Handling a mobile 3D scanning system often includes bad conditions such as light reflection and non-uniform illumination. As the basic part of the scanning process, the proposed binarization method successfully overcomes the above problems and does it successfully. Due to the trend of increasing image size and real-time image processing we were able to achieve the required small algorithmic complexity. The paper outlines a comparison with several other methods with a focus on objects with markers including the calibration system plane of the 3D scanning system. Although it is obvious that no binarization algorithm is best for all types of images, we also give the results of the proposed method applied to historical documents.


2021 ◽  
pp. 57-74
Author(s):  
I.N. Kulikov

The paper gives approaches to the use of existing LIDAR (Light Identification, Detection and Ranging) scanning systems to survey the Moon and other plan-ets. The study conducted is based on available domestic and foreign experience in using aerial (ALS), mobile (MLS), and ground (GLS) laser scanners. Issues of using space scanning systems for spatial and technical monitoring are also considered. The formulated problems of the creation and operation of space-purposed scanning systems allow determining the priority lines of applied scientific studies in this subject area.


2021 ◽  
Author(s):  
Esley García ◽  
Raúl Cámara ◽  
Alejandro Linares ◽  
Damián Martínez ◽  
Víctor Abonza ◽  
...  

Abstract Mean-Shift Super Resolution (MSSR) is a principle based on the Mean Shift theory that improves the spatial resolution in fluorescence images beyond the diffraction limit. MSSR works on low- and high-density fluorophore images, is not limited by the architecture of the detector (EM-CCD, sCMOS, or photomultiplier-based laser scanning systems) and is applicable to single images as well as temporal series. The theoretical limit of spatial resolution, based on optimized real-world imaging conditions and analysis of temporal image series, has been measured to be 40 nm. Furthermore, MSSR has denoising capabilities that outperform other analytical super resolution image approaches. Altogether, MSSR is a powerful, flexible, and generic tool for multidimensional and live cell imaging applications.


2021 ◽  
Author(s):  
Esley Torres ◽  
Raúl Pinto ◽  
Alejandro Linares ◽  
Damián Martínez ◽  
Víctor Abonza ◽  
...  

Mean-Shift Super Resolution (MSSR) is a principle based on the Mean Shift theory that improves the spatial resolution in fluorescence images beyond the diffraction limit. MSSR works on low- and high-density fluorophore images, is not limited by the architecture of the detector (EM-CCD, sCMOS, or photomultiplier-based laser scanning systems) and is applicable to single images as well as temporal series. The theoretical limit of spatial resolution, based on optimized real-world imaging conditions and analysis of temporal image series, has been measured to be 40 nm. Furthermore, MSSR has denoising capabilities that outperform other analytical super resolution image approaches. Altogether, MSSR is a powerful, flexible, and generic tool for multidimensional and live cell imaging applications.


2021 ◽  
Vol 13 (19) ◽  
pp. 4004
Author(s):  
Anne Kinsey-Henderson ◽  
Aaron Hawdon ◽  
Rebecca Bartley ◽  
Scott N. Wilkinson ◽  
Thomas Lowe

Detailed understanding of gully erosion processes is essential for monitoring gully remediation and requires fine-scale monitoring. Hand-held laser scanning systems (HLS) enable rapid ground-based data acquisition at centimeter precision and ranges of 10–100 m. This study quantified errors in measuring gully morphology and erosion over a four year period using two models of HLS. Reference datasets were provided by Real-Time-Kinematic (RTK) GPS and a RIEGL Terrestrial Laser Scanner (TLS). The study site was representative of linear gullies that occur extensively on hillslopes throughout Great Barrier Reef catchments, where gully erosion is the dominant source of fine sediment. The RMSE error against RTK survey points varied 0.058–0.097 m over five annual scans. HLS was found to measure annual gully headcut extension within 0.035 m of RTK. HLS was, on average, within 6% of TLS for morphological metrics of depth, area and volume. Volumetric change over a 60 m length of the gully and four years was estimated to within 23% of TLS. Errors could potentially be improved by scanning at times of year with lower ground vegetation cover. HLS provided similar levels of error and was relatively more rapid than TLS and RTK for monitoring gully morphology and change.


Author(s):  
Jae‐Hoon Kim ◽  
Sung‐Ae Son ◽  
Hyeonjong Lee ◽  
Yeon‐Jee Yoo ◽  
Seoung‐Jin Hong ◽  
...  

2021 ◽  
Vol 11 (18) ◽  
pp. 8451
Author(s):  
Virgil-Florin Duma ◽  
Alexandru-Lucian Dimb

Rotational Risley prisms are one of the fastest two-dimensional (2D) optomechanical scanning systems. Their drawback is the strong non-linearity of the scan patterns they produce, in contrast to the most common (but slower) raster scanning modalities of 2D dual axis galvanometer scanners (GSs) or Micro-Electro-Mechanical Systems (MEMS) with oscillatory mirrors. The aim of this work is to develop a graphical method, which, to our knowledge, we have introduced to determine and characterize, using a commercially-available mechanical design program (for example CATIA V5R20 (Dassault Systems, Paris, France)) to simulate the exact scan patterns of rotational Risley prisms. Both the maximum and minimum angular and linear deviations of this type of scanner are deduced theoretically to characterize the outer diameter/Field-of-View (FOV) and the inner diameter (of the blind zone) of its ring-shaped patterns, respectively. This multi-parameter analysis is performed in correlation with the shape of the scan patterns, considering the four possible configurations of laser scanners with a pair of rotational Risley prisms, as well as all their parameters: prisms angles, refractive indexes, rotational speeds, distance between the two prisms, and the distance from the system to the scanned plane. Marshall’s synthetic parameters are also considered, i.e., the ratios of the rotational velocities and of the angles of the prisms. Rules-of-thumb for designing this optomechanical scanner are extracted from this analysis, regarding both shapes and dimensions of the scan patterns to be produced. An example of experimental validation completes the mathematical analysis and the performed simulations.


Sign in / Sign up

Export Citation Format

Share Document