resonant magnetic perturbations
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 44)

H-INDEX

33
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Marina Becoulet ◽  
Guido Huijsmans ◽  
Chantal Passeron ◽  
Yueqiang Liu ◽  
Todd E Evans ◽  
...  

Abstract Edge Localized Modes (ELMs) suppression by Resonant Magnetic Perturbations (RMPs) was studied with the non-linear MHD code JOREK for the ITER H-mode scenarios at 15MA,12.5MA,10MA/5.3T. The main aim of this work was to demonstrate that ELMs can be suppressed by RMPs while the divertor 3D footprints of heat and particle fluxes remain within divertor material limits. The unstable peeling-ballooning modes responsible for ELMs without RMPs were modelled first for each scenario using numerically accessible parameters for ITER. Then the stabilization of ELMs by RMPs was modelled with the same parameters. RMP spectra, optimized by the linear MHD MARS-F code, with main toroidal harmonics N=2, N=3, N=4 have been used as boundary conditions of the computational domain of JOREK, including realistic RMP coils, main plasma, Scrape Off Layer (SOL) divertor and realistic first wall. The model includes all relevant plasma flows: toroidal rotation, two fluid diamagnetic effects and neoclassical poloidal friction. With RMPs, the main toroidal harmonic and the non-linearly coupled harmonics remain dominant at the plasma edge, producing saturated modes and a continuous MHD turbulent transport thereby avoiding ELM crashes in all scenarios considered here. The threshold for ELM suppression was found at a maximum RMP coils current of 45kAt-60kAt compared to the coils maximum capability of 90kAt. In the high beta poloidal steady-state 10MA/5.3T scenario, a rotating QH-mode without ELMs was observed even without RMPs. In this scenario with RMPs N=3, N=4 at 20kAt maximum current in RMP coils, similar QH-mode behavior was observed however with dominant edge harmonic corresponding to the main toroidal number of RMPs. The 3D footprints with RMPs show the characteristic splitting with the main RMP toroidal symmetry. The maximum radial extension of the footprints typically was ~20 cm in inner divertor and ~40 cm in outer divertor with stationary heat fluxes decreasing further out from the initial strike point from ~5MW/m2 to ~1MW/m2 assuming a total power in the divertor and walls is 50MW.


2021 ◽  
Vol 28 (12) ◽  
pp. 122502
Author(s):  
Youjun Hu ◽  
Yingfeng Xu ◽  
Baolong Hao ◽  
Guoqiang Li ◽  
Kaiyang He ◽  
...  

2021 ◽  
Author(s):  
Stefano Munaretto ◽  
Dmitri M Orlov ◽  
Carlos Paz-Soldan ◽  
Igor Bykov ◽  
Charles Lasnier ◽  
...  

Abstract The structure of the non-axisymmetric heat load distribution at the divertor plates is determined not only by the toroidal but also from the poloidal spectrum of non-axisymmetric eld perturbations. Whether they are intrinsic, like error fields, or they are applied through 3D coils, the non-axisymmetric fields produce complex 3D edge magnetic topologies (footprints) that alter the properties of the heat and particle flux distributions on the divertor target plates. In this manuscript, a study of the impact of applied 3D eld poloidal spectrum on the footprint size and structure is done for the DIII-D tokamak using the resistive MHD code M3D-C1 coupled with the field line tracing code TRIP3D. To resolve the impact of the poloidal spectrum of the magnetic perturbation, the relative phase of the two rows of in-vessel 3D coils used to produce both a n = 2 and a n = 3 perturbation is varied, where n is the toroidal harmonic of the magnetic perturbation. This shows that the largest footprint is predicted when the relative phase of the two rows is close to zero, which is also where the resonant coupling with the plasma is maximized. These results suggest that it will be challenging to decouple the footprint size from the requisite resonant coupling for RMP-ELM control. The correlation between the measured heat load and particle flux distributions at the outer divertor plates in DIII-D and the magnetic measurements is in good agreement with the predicted dependence of the magnetic footprint size on the amplitude of the resonant component of the plasma response.


2021 ◽  
Vol 28 (9) ◽  
pp. 092511
Author(s):  
Pengcheng Xie ◽  
Youwen Sun ◽  
Yueqiang Liu ◽  
Shuai Gu ◽  
Qun Ma ◽  
...  

Author(s):  
Jingyuan Fu ◽  
Pengfei Liu ◽  
Xishuo Wei ◽  
Zhihong Lin ◽  
Nathaniel Ferraro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document