operation phase
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 87)

H-INDEX

11
(FIVE YEARS 6)

2022 ◽  
Vol 14 (2) ◽  
pp. 301
Author(s):  
Mohammed Dabboor ◽  
Ian Olthof ◽  
Masoud Mahdianpari ◽  
Fariba Mohammadimanesh ◽  
Mohammed Shokr ◽  
...  

The Canadian RADARSAT Constellation Mission (RCM) has passed its early operation phase with the performance evaluation being currently active. This evaluation aims to confirm that the innovative design of the mission’s synthetic aperture radar (SAR) meets the expectations of intended users. In this study, we provide an overview of initial results obtained for three high-priority applications; flood mapping, sea ice analysis, and wetland classification. In our study, the focus is on results obtained using not only linear polarization, but also the adopted Compact Polarimetric (CP) architecture in RCM. Our study shows a promising level of agreement between RCM and RADARSAT-2 performance in flood mapping using dual-polarized HH-HV SAR data over Red River, Manitoba, suggesting smooth continuity between the two satellite missions for operational flood mapping. Visual analysis of coincident RCM CP and RADARSAT-2 dual-polarized HH-HV SAR imagery over the Resolute Passage, Canadian Central Arctic, highlighted an improved contrast between sea ice classes in dry ice winter conditions. A statistical analysis using selected sea ice samples confirmed the increased contrast between thin and both rough and deformed ice in CP SAR. This finding is expected to enhance Canadian Ice Service’s (CIS) operational visual analysis of sea ice in RCM SAR imagery for ice chart production. Object-oriented classification of a wetland area in Newfoundland and Labrador by fusion of RCM dual-polarized VV-VH data and Sentinel-2 optical imagery revealed promising classification results, with an overall accuracy of 91.1% and a kappa coefficient of 0.87. Marsh presented the highest user’s and producer’s accuracies (87.77% and 82.08%, respectively) compared to fog, fen, and swamp.


Author(s):  
Xavier L LITAUDON ◽  
Frank Jenko ◽  
D. Borba ◽  
Dmitriy V. Borodin ◽  
Bastiaan Braams ◽  
...  

Abstract The paper is a written summary of an overview oral presentation given at the 1st Spanish Fusion HPC Workshop that took place on the 27th November 2020 as an online event. Given that over the next few years ITER will move to its operation phase and the European-DEMO design will be significantly advanced, the EUROfusion consortium has initiated a coordination effort in theory and advanced simulation to address some of the challenges of the fusion research in Horizon EUROPE (2021-2027), i.e. the next EU Framework Programme for Research and Technological Development. This initiative has been called E-TASC that stands for EUROfusion-Theory and Advanced Simulation Coordination. The general and guiding principles of E-TASC are summarized in the paper. In addition, an overview of the scientific results obtained in a pilot phase (2019-2020) of E-TASC are provided while highlighting the importance of the required progress in computational methods and HPC techniques. In the initial phase, five pilot theory and simulation tasks were initiated: 1. Towards a validated predictive capability of the L-H transition and pedestal physics; 2. Electron runaway in tokamak disruptions in the presence of massive material injection; 3. Fast code for the calculation of neoclassical toroidal viscosity in stellarators and tokamaks; 4. Development of a neutral gas kinetics modular code; 5. European edge and boundary code for reactor-relevant devices. In this paper we report on recent progress made by each of these projects.


2021 ◽  
Author(s):  
Sedat Gulcimen ◽  
Nigmet Uzal ◽  
Tolgahan Varışlı ◽  
Ghaith Khidrah

Abstract In recent years, there has been a significant transition from multi-storey buildings to single-family houses especially due to COVID-19 pandemic. Thus, people prefer to live in single-family houses or detached houses where they have more free space in outside of the house. The aim of this study is to quantify and compare the environmental performance of a single-family house and multi-storey apartment building in Turkey throughout their life cycle with cradle-to-grave approach. Life Cycle Assessment (LCA) based on ISO 14040 and ISO 14044 was used to analyse the environmental impacts of the single-family house and multi-storey apartment buildings. The functional unit was chosen as 1m2 of floor area of a house over their lifespan (50 years). With cradle-to-grave approach of the LCA, the system boundaries for the environmental assessment covers the pre-operation, operation and post-operation stages. The results of this LCA study revealed that majority of the environmental impacts occurs at operation phase for both single-family house and multi-storey apartment. The operation stage has the highest impact with 79% and 78% share of the global warming potential (GWP) for single-family house and the multi-storey apartment, respectively. In comparison of environmental impact results, GWP of the multi-storey apartment per m2 of floor area is 30% lower than single-family house. The environmental impacts of the operation phase have significant importance on the overall environmental performance of both single-family house and multi-storey apartment. The results showed that electricity consumption and steel usage are the main contributors of the environmental impacts coming from the operation and pre-operation phases, respectively. To pave the way to a sustainable future, the building industry must strive to use of renewable energy sources and sustainable construction materials in order to reduce their environmental impacts with a sustainable approach.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2175
Author(s):  
Federica Cacciatore ◽  
Marina Amici ◽  
Giulia Romanelli ◽  
Valentina Bernarello ◽  
Gianluca Franceschini ◽  
...  

In 2009, the first Italian offshore LNG terminal, located approximately 12 km from the coast of Italy in the Northern Adriatic Sea, started its operation phase. Even if the active chlorine concentration in the discharged seawater is within limits set by Italian regulations (0.2 mg/L), to verify the environmental impact of disinfection by-products (DBPs) on the ecosystem, a specific monitoring program was scheduled from 2010 to 2015. The present study is the first displaying results of DBPs in marine waters of the Adriatic Sea. During the first two years of monitoring activities, DBPs were slightly above limit of quantifications (LOQs) in all investigated matrices and limited to the nearest area around the terminal. In these surveys, bromoform was the most frequently detected compound in seawaters, while haloacetic acid presence, as well as transplanted mussels and fish fauna, mostly characterized sediments. In the following surveys, levels were mostly negligible in all matrices investigated, with values mostly below the specific LOQs of the different compounds.


Author(s):  
Hoang Van Tung ◽  
Nguyen Van Khanh ◽  
Nguyen Chi Ngon

Fault diagnosis is a useful tool that reduces system maintenance risks and costs. However, data related to the system's nominal and fault operating behavior is often not collected and stored adequately, it is difficult to identify and suggest automated fault detection methods. This study proposes a solution to apply deep learning technique on the convolutional neural network (CNN) to identify some common errors on induction motors based on operation sound. The opreration sound signal emitted from on a 0.37 kW two-pole induction motor is collected in some cases such as normal operation, phase loss, phase difference and bearing breakage. Their 2-D scalogram images are analyzed by continuous Wavelet transformation which is used to train and evaluate the deep learning CNN (i.e. GoogLeNet) to identify the above faults. Experimental results show that this method can diagnose induction motor faults with accuracy up to 98.8%.


2021 ◽  
Vol 11 (21) ◽  
pp. 9839
Author(s):  
Stefan Sedivy ◽  
Lenka Mikulova ◽  
Peter Danisovic ◽  
Juraj Sramek ◽  
Lubos Remek ◽  
...  

Ensuring the sustainability of road infrastructure cannot be achieved without the continuous application of new knowledge and approaches within individual management steps. A particularly risky stage in the life cycle of existing roads is the operation phase. High attention is paid to the environmental, financial and social impacts and benefits of individual processes applied by road managers. These processes meet in pavement management systems (PMS), which, however, cannot work reliably without the necessary input data. Information on the development of the technical condition of the road can also be included among the most important data. The paper brings the first outputs from several years of research of measurements on the Slovak 1st class road. Its aim is to gradually determine the degradation functions for the needs of Slovak geographical, climatic and transport conditions. The secondary objective is to verify the reliability of non-destructive measurement procedures of the technical condition of the road. Emphasis is placed on the application of such mathematical procedures that can not only reliably bring about the determination of past developments in the roadway, but can also present the expected picture of future developments.


2021 ◽  
Vol 28 (10) ◽  
pp. 102503
Author(s):  
H. Frerichs ◽  
Y. Feng ◽  
X. Bonnin ◽  
R. A. Pitts ◽  
D. Reiter ◽  
...  

2021 ◽  
Vol 96 (12) ◽  
pp. 124020 ◽  
Author(s):  
M Balden ◽  
M Mayer ◽  
B Bliewert ◽  
E Bernard ◽  
M Diez ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document