magnetic perturbation
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 60)

H-INDEX

24
(FIVE YEARS 4)

Author(s):  
Liang Liao ◽  
Yunfeng Liang ◽  
Shaocheng Liu ◽  
Huaxiang Zhang ◽  
Xiang Ji ◽  
...  

Abstract An external resonant magnetic perturbation (RMP) field, an effective method to mitigate or suppress the edge localized mode (ELM), has been planned to be applied on the ELM control issue in ITER. A new set of magnetic perturbation coils, named as high m coils, has been developed for the EAST tokamak. The magnetic perturbation field of the high m coils is localized in the midplane of the low field side (LFS), with a spectrum characteristic of high m and wide n, where m and n are the poloidal and toroidal mode numbers, respectively. The high m coils generates a strong localized perturbation field. Edge magnetic topology under the application of high m coils should have either a small or no stochastic region. With the combination of the high m coils and the current RMP coils, flexible working scenarios of the magnetic perturbation field are available, which is beneficial for ELM control exploration on EAST. Numerical simulations have been carried out to characterize the high m coil system, including the magnetic spectrum and magnetic topology, which shows a great flexibility of magnetic perturbation variation as a tool to investigate the interaction between ELM and external magnetic perturbation.


2022 ◽  
Author(s):  
Weiwen Xiao ◽  
Todd E Evans ◽  
George R Tynan ◽  
Dmitri M Orlov ◽  
S W Yoon ◽  
...  

Abstract The plasma response associated with the Resonant Magnetic Perturbation (RMP) field was investigated using the small edge perturbations induced by a modulated Supersonic Molecular Beam Injection (SMBI) in KSTAR. The modulated SMBI provides a time-varying perturbation of the plasma density source in the region just inside the last closed flux surface (LCFS) and a modulated flow damping rate. Radial propagation of the toroidal rotation perturbation induced by SMBI from the q=3 surface to the q=2 surface was observed. Theoretical analysis using the General Perturbed Equilibrium Code (GPEC) of the RMP intensity profiles of the RMP field is consistent with the phase profile of the toroidal rotation perturbation.


Author(s):  
Zhengxiong Wang ◽  
Weikang Tang ◽  
Lai Wei

Abstract This paper reviews the effects of resonant magnetic perturbation (RMP) on classical tearing modes (TMs) and neoclassical tearing modes (NTMs) from the theory, experimental discovery and numerical results with a focus on four major aspects: (i) mode mitigation, where the TM/NTM is totally suppressed or partly mitigated by the use of RMP; (ii) mode penetration, which means a linearly stable TM/NTM triggered by the externally applied RMP; (iii) mode locking, namely an existing rotating magnetic island braked and finally stopped by the RMP; (iv) mode unlocking, as the name suggests, it is the reverse of the mode locking process. The key mechanism and physical picture of above phenomena are revealed and summarized.


2021 ◽  
Author(s):  
Vladimir D Pustovitov

Abstract The study is devoted to theoretical analysis of the models for calculating the disruption forces in tokamaks. It is motivated by the necessity of reliable predictions for ITER. The task includes the evaluation of the existing models, resolution of the conflicts between them, elimination of contradictions by proper improvements, elaboration of recommendations for dedicated studies. Better qualities of the modelling and higher accuracy are the ultimate theoretical goals. In recent years, there was a steady progress in developing a physics basis for calculating the forces, which gave rise to new trends and ideas. It was discovered, in particular, that the wall resistivity, penetration of the magnetic perturbation through the wall, the poloidal current induced in the wall, the kink-mode coupling, plasma position in the vacuum vessel must be the elements essentially affecting the disruption forces. These and related predictions along with earlier less sophisticated concepts and results are analyzed here


2021 ◽  
Author(s):  
Stefano Munaretto ◽  
Dmitri M Orlov ◽  
Carlos Paz-Soldan ◽  
Igor Bykov ◽  
Charles Lasnier ◽  
...  

Abstract The structure of the non-axisymmetric heat load distribution at the divertor plates is determined not only by the toroidal but also from the poloidal spectrum of non-axisymmetric eld perturbations. Whether they are intrinsic, like error fields, or they are applied through 3D coils, the non-axisymmetric fields produce complex 3D edge magnetic topologies (footprints) that alter the properties of the heat and particle flux distributions on the divertor target plates. In this manuscript, a study of the impact of applied 3D eld poloidal spectrum on the footprint size and structure is done for the DIII-D tokamak using the resistive MHD code M3D-C1 coupled with the field line tracing code TRIP3D. To resolve the impact of the poloidal spectrum of the magnetic perturbation, the relative phase of the two rows of in-vessel 3D coils used to produce both a n = 2 and a n = 3 perturbation is varied, where n is the toroidal harmonic of the magnetic perturbation. This shows that the largest footprint is predicted when the relative phase of the two rows is close to zero, which is also where the resonant coupling with the plasma is maximized. These results suggest that it will be challenging to decouple the footprint size from the requisite resonant coupling for RMP-ELM control. The correlation between the measured heat load and particle flux distributions at the outer divertor plates in DIII-D and the magnetic measurements is in good agreement with the predicted dependence of the magnetic footprint size on the amplitude of the resonant component of the plasma response.


2021 ◽  
Vol 126 (9) ◽  
Author(s):  
Mark J. Engebretson ◽  
Lidiya Y. Ahmed ◽  
Viacheslav A. Pilipenko ◽  
Erik S. Steinmetz ◽  
Mark B. Moldwin ◽  
...  

2021 ◽  
Vol 28 (8) ◽  
pp. 082504
Author(s):  
L. Li ◽  
Y. Q. Liu ◽  
G. L. Xia ◽  
Y. F. Wang ◽  
Q. B. Luan ◽  
...  

AIP Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 075010
Author(s):  
Fubin Zhong ◽  
Tao Zhang ◽  
Yumin Wang ◽  
Fei Wen ◽  
Jia Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document