nicrophorus marginatus
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 0)

Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 662
Author(s):  
Mark C. Belk ◽  
Peter J. Meyers ◽  
J. Curtis Creighton

The cost of reproduction hypothesis suggests that allocation to current reproduction constrains future reproduction. How organisms accrue reproductive costs and allocate energy across their lifetime may differ among species adapted to different resource types. We test this by comparing lifetime reproductive output, patterns of reproductive allocation, and senescence between two species of burying beetles, Nicrophorus marginatus and N. guttula, that differ in body size, across a range of carcass sizes. These two species of burying beetles maximized lifetime reproductive output on somewhat different–sized resources. The larger N. marginatus did better on large and medium carcasses while the smaller N. guttula did best on small and medium carcasses. For both species, reproduction is costly and reproduction on larger carcasses reduced lifespan more than reproduction on smaller carcasses. Carcass size also affected lifetime reproductive strategies. Each species’ parental investment patterns were consistent with terminal investment on carcasses on which they performed best (optimal carcass sizes). However, they exhibited reproductive restraint on carcass sizes on which they did not perform as well. Reproductive senescence occurred largely in response to carcass size. For both species, reproduction on larger carcasses resulted in more rapid senescence. These data suggest that whether organisms exhibit terminal investment or reproductive restraint may depend on type and amount of resources for reproduction.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253885
Author(s):  
Ethan P. Damron ◽  
Ashlee N. Smith Momcilovitch ◽  
Dane Jo ◽  
Mark C. Belk

Multigenerational effects (often called maternal effects) are components of the offspring phenotype that result from the parental phenotype and the parental environment as opposed to heritable genetic effects. Multigenerational effects are widespread in nature and are often studied because of their potentially important effects on offspring traits. Although multigenerational effects are commonly observed, few studies have addressed whether they affect offspring fitness. In this study we assess the effect of potential multigenerational effects of parental body size and natal carcass size on lifetime fitness in the burying beetle, Nicrophorus marginatus (Coleoptera; Silphidae). Lifespan, total number of offspring, and number of offspring in the first reproductive bout were not significantly related to parental body size or natal carcass size. However, current carcass size used for reproduction was a significant predictor for lifetime number of offspring and number of offspring in the first brood. We find no evidence that multigenerational effects from larger parents or larger natal carcasses contribute to increased fitness of offspring.


2020 ◽  
Vol 98 (9) ◽  
pp. 591-602
Author(s):  
K.W. Burke ◽  
J.D. Wettlaufer ◽  
D.V. Beresford ◽  
P.R. Martin

The coexistence of closely related species plays an important role in shaping local diversity. However, competition for shared resources can limit the ability of species to coexist. Many species avoid the costs of coexistence by diverging in habitat use, known as habitat partitioning. We examine patterns of habitat use in seven co-occurring species of burying beetles (genus Nicrophorus Fabricius, 1775), testing the hypothesis that Nicrophorus species partition resources by occupying distinct habitats. We surveyed Nicrophorus abundance and 54 habitat characteristics at 100 random sites spanning an environmentally diverse region of southeastern Ontario, Canada. We found that three species occupied distinct habitat types consistent with habitat partitioning. Specifically, Nicrophorus pustulatus Herschel, 1807, Nicrophorus hebes Kirby, 1837, and Nicrophorus marginatus Fabricius, 1801 appear to be specialists for forest canopy, wetlands, and open fields, respectively. In contrast, Nicrophorus orbicollis Say, 1825, Nicrophorus sayi Laporte, 1840, and Nicrophorus tomentosus Weber, 1801 appear to be generalists with wide breadths of habitat use. We were unable to identify the habitat associations of Nicrophorus defodiens Mannerheim, 1846. Our findings are consistent with habitat acting as an important resource axis along which some Nicrophorus species partition; however, divergence along other resource axes (e.g., temporal partitioning) also appears important for Nicrophorus coexistence.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Ashlee N. Smith ◽  
Mark C. Belk

We tested whether brood parasitism could be successful between two co-occurring species of burying beetles, Nicrophorus guttula and Nicrophorus marginatus, and whether these species exhibit an adaptive response to brood parasitism by detecting and removing parasites. We cross-fostered larvae between broods of the two species and created mixed-species broods to simulate the addition of brood parasites. Brood parasites survived in both species’ broods. Nicrophorus marginatus culled 86% of brood parasites compared to 56% of their own larvae, and N. guttula culled 50% of brood parasites compared to 22% of their own larvae. Additionally, N. guttula brood parasites were significantly smaller than N. guttula that were raised by N. guttula parents, but N. marginatus brood parasites were significantly larger than N. marginatus that were raised by N. marginatus parents. This paper provides the first evidence that burying beetles can discriminate between their own larvae and other species’ larvae. We suggest that brood parasitism may be the selective force responsible for this ability.


2006 ◽  
Vol 31 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Jon C. Bedick ◽  
W. Wyatt Hoback ◽  
Marc C. Albrecht

Sign in / Sign up

Export Citation Format

Share Document