offspring fitness
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 57)

H-INDEX

36
(FIVE YEARS 5)

Author(s):  
Aneta Arct ◽  
Rafał Martyka ◽  
Szymon M. Drobniak ◽  
Wioleta Oleś ◽  
Anna Dubiec ◽  
...  

AbstractAmbient temperature experienced by an animal during development or subsequently as an adult can affect many aspects of its behaviour and life-history traits. In birds, egg incubation is a vital component of reproduction and parental care. Several studies have suggested that environmental factors (such as nest microclimate) can influence the ability of incubating parents to maintain suitable conditions for embryo development. Here, we manipulated the developmental conditions of embryos through a modification of nest box thermal microclimate to investigate female incubation behaviour and its impact on offspring fitness-related traits in a wild population of the Collared Flycatcher (Ficedula albicollis). The temperature in experimental nests was increased using a heat-pack placed under the roof of a nest box, resulting in an average temperature increase of 2.5 ºC, which corresponds to projected climate change scenarios. We demonstrated that females from nests with elevated temperature spent less time in the nest box during egg incubation and had more off-bouts than females from control nests. Moreover, we found that offspring from the experimentally heated nests had larger body mass at fledging in comparison to the control ones. Our study indicates that nest microclimate during the incubation period affects female incubation behaviour and offspring quality, indicating that environmental variation in nest temperature early in ontogeny can have important and long-lasting fitness consequences.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260573
Author(s):  
Sarah Fausett ◽  
Nausicaa Poullet ◽  
Clotilde Gimond ◽  
Anne Vielle ◽  
Michele Bellone ◽  
...  

Maintaining reproduction in highly variable, often stressful, environments is an essential challenge for all organisms. Even transient exposure to mild environmental stress may directly damage germ cells or simply tax the physiology of an individual, making it difficult to produce quality gametes. In Caenorhabditis elegans, a large fraction of germ cells acts as nurse cells, supporting developing oocytes before eventually undergoing so-called physiological germ cell apoptosis. Although C. elegans apoptosis has been extensively studied, little is known about how germline apoptosis is influenced by ecologically relevant environmental stress. Moreover, it remains unclear to what extent germline apoptosis contributes to maintaining oocyte quality, and thus offspring viability, in such conditions. Here we show that exposure to diverse environmental stressors, likely occurring in the natural C. elegans habitat (starvation, ethanol, acid, and mild oxidative stress), increases germline apoptosis, consistent with previous reports on stress-induced apoptosis. Using loss-of-function mutant alleles of ced-3 and ced-4, we demonstrate that eliminating the core apoptotic machinery strongly reduces embryonic survival when mothers are exposed to such environmental stressors during early adult life. In contrast, mutations in ced-9 and egl-1 that primarily block apoptosis in the soma but not in the germline, did not exhibit such reduced embryonic survival under environmental stress. Therefore, C. elegans germ cell apoptosis plays an essential role in maintaining offspring fitness in adverse environments. Finally, we show that ced-3 and ced-4 mutants exhibit concomitant decreases in embryo size and changes in embryo shape when mothers are exposed to environmental stress. These observations may indicate inadequate oocyte provisioning due to the absence of germ cell apoptosis. Taken together, our results show that the central genes of the apoptosis pathway play a key role in maintaining gamete quality, and thus offspring fitness, under ecologically relevant environmental conditions.


2021 ◽  
Vol 288 (1960) ◽  
Author(s):  
Laura M. Travers ◽  
Hanne Carlsson ◽  
Martin I. Lind ◽  
Alexei A. Maklakov

Old parental age is commonly associated with negative effects on offspring life-history traits. Such parental senescence effects are predicted to have a cumulative detrimental effect over successive generations. However, old parents may benefit from producing higher quality offspring when these compete for seasonal resources. Thus, old parents may choose to increase investment in their offspring, thereby producing fewer but larger and more competitive progeny. We show that Caenorhabditis elegans hermaphrodites increase parental investment with advancing age, resulting in fitter offspring who reach their reproductive peak earlier. Remarkably, these effects increased over six successive generations of breeding from old parents and were subsequently reversed following a single generation of breeding from a young parent. Our findings support the hypothesis that offspring of old parents receive more resources and convert them into increasingly faster life histories. These results contradict the theory that old parents transfer a cumulative detrimental ‘ageing factor’ to their offspring.


2021 ◽  
Vol 17 (10) ◽  
Author(s):  
Antony M. Brown ◽  
Emma M. Wood ◽  
Pablo Capilla-Lasheras ◽  
Xavier A. Harrison ◽  
Andrew J. Young

As telomere length (TL) often predicts survival and lifespan, there is considerable interest in the origins of inter-individual variation in TL. Cross-generational effects of parental age on offspring TL are thought to be a key source of variation, but the rarity of longitudinal studies that examine the telomeres of successive offspring born throughout the lives of parents leaves such effects poorly understood. Here, we exploit TL measures of successive offspring produced throughout the long breeding tenures of parents in wild white-browed sparrow weaver ( Plocepasser mahali ) societies, to isolate the effects of within-parent changes in age on offspring TLs. Our analyses reveal the first evidence to date of a positive within-parent effect of advancing age on offspring TL: as individual parents age, they produce offspring with longer telomeres (a modest effect that persists into offspring adulthood). We consider the potential for pre- and post-natal mechanisms to explain our findings. As telomere attrition predicts offspring survival to adulthood in this species, this positive parental age effect could impact parent and offspring fitness if it arose via differential telomere attrition during offspring development. Our findings support the view that cross-generational effects of parental age can be a source of inter-individual variation in TL.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Lucia Mentesana ◽  
Martin N. Andersson ◽  
Stefania Casagrande ◽  
Wolfgang Goymann ◽  
Caroline Isaksson ◽  
...  

Abstract Background In egg-laying animals, mothers can influence the developmental environment and thus the phenotype of their offspring by secreting various substances into the egg yolk. In birds, recent studies have demonstrated that different yolk substances can interactively affect offspring phenotype, but the implications of such effects for offspring fitness and phenotype in natural populations have remained unclear. We measured natural variation in the content of 31 yolk components known to shape offspring phenotypes including steroid hormones, antioxidants and fatty acids in eggs of free-living great tits (Parus major) during two breeding seasons. We tested for relationships between yolk component groupings and offspring fitness and phenotypes. Results Variation in hatchling and fledgling numbers was primarily explained by yolk fatty acids (including saturated, mono- and polyunsaturated fatty acids) - but not by androgen hormones and carotenoids, components previously considered to be major determinants of offspring phenotype. Fatty acids were also better predictors of variation in nestling oxidative status and size than androgens and carotenoids. Conclusions Our results suggest that fatty acids are important yolk substances that contribute to shaping offspring fitness and phenotype in free-living populations. Since polyunsaturated fatty acids cannot be produced de novo by the mother, but have to be obtained from the diet, these findings highlight potential mechanisms (e.g., weather, habitat quality, foraging ability) through which environmental variation may shape maternal effects and consequences for offspring. Our study represents an important first step towards unraveling interactive effects of multiple yolk substances on offspring fitness and phenotypes in free-living populations. It provides the basis for future experiments that will establish the pathways by which yolk components, singly and/or interactively, mediate maternal effects in natural populations.


2021 ◽  
Vol 288 (1956) ◽  
pp. 20211045
Author(s):  
Victoria L. Pike ◽  
Charlie K. Cornwallis ◽  
Ashleigh S. Griffin

Individuals are expected to avoid mating with relatives as inbreeding can reduce offspring fitness, a phenomenon known as inbreeding depression. This has led to the widespread assumption that selection will favour individuals that avoid mating with relatives. However, the strength of inbreeding avoidance is variable across species and there are numerous cases where related mates are not avoided. Here we test if the frequency that related males and females encounter each other explains variation in inbreeding avoidance using phylogenetic meta-analysis of 41 different species from six classes across the animal kingdom. In species reported to mate randomly with respect to relatedness, individuals were either unlikely to encounter relatives, or inbreeding had negligible effects on offspring fitness. Mechanisms for avoiding inbreeding, including active mate choice, post-copulatory processes and sex-biased dispersal, were only found in species with inbreeding depression. These results help explain why some species seem to care more about inbreeding than others: inbreeding avoidance through mate choice only evolves when there is both a risk of inbreeding depression and related sexual partners frequently encounter each other.


2021 ◽  
Vol 288 (1955) ◽  
pp. 20211269
Author(s):  
Meret Huber ◽  
Saskia Gablenz ◽  
Martin Höfer

Although non-genetic inheritance is thought to play an important role in plant ecology and evolution, evidence for adaptive transgenerational plasticity is scarce. Here, we investigated the consequences of copper excess on offspring defences and fitness under recurring stress in the duckweed Spirodela polyrhiza across multiple asexual generations . Growing large monoclonal populations (greater than 10 000 individuals) for 30 generations under copper excess had negative fitness effects after short and no fitness effect after prolonged growth under recurring stress. These time-dependent growth rates were likely influenced by environment-induced transgenerational responses, as propagating plants as single descendants for 2 to 10 generations under copper excess had positive, negative or neutral effects on offspring fitness depending on the interval between initial and recurring stress (5 to 15 generations). Fitness benefits under recurring stress were independent of flavonoid accumulations, which in turn were associated with altered plant copper concentrations. Copper excess modified offspring fitness under recurring stress in a genotype-specific manner, and increasing the interval between initial and recurring stress reversed these genotype-specific fitness effects. Taken together, these data demonstrate time- and genotype-dependent adaptive and non-adaptive transgenerational responses under recurring stress, which suggests that non-genetic inheritance alters the evolutionary trajectory of clonal plant lineages in fluctuating environments.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253885
Author(s):  
Ethan P. Damron ◽  
Ashlee N. Smith Momcilovitch ◽  
Dane Jo ◽  
Mark C. Belk

Multigenerational effects (often called maternal effects) are components of the offspring phenotype that result from the parental phenotype and the parental environment as opposed to heritable genetic effects. Multigenerational effects are widespread in nature and are often studied because of their potentially important effects on offspring traits. Although multigenerational effects are commonly observed, few studies have addressed whether they affect offspring fitness. In this study we assess the effect of potential multigenerational effects of parental body size and natal carcass size on lifetime fitness in the burying beetle, Nicrophorus marginatus (Coleoptera; Silphidae). Lifespan, total number of offspring, and number of offspring in the first reproductive bout were not significantly related to parental body size or natal carcass size. However, current carcass size used for reproduction was a significant predictor for lifetime number of offspring and number of offspring in the first brood. We find no evidence that multigenerational effects from larger parents or larger natal carcasses contribute to increased fitness of offspring.


Author(s):  
Jun Huang ◽  
Fuying Zhi ◽  
Juan Zhang ◽  
Xiaowei Li ◽  
Yaobin Lu

AbstractThe absence of natural enemies in newly invaded areas is a key factor in the successful invasion of alien species. Whether a specific parasitoid can be domesticated to attack a nonnatural host that has no reported parasitic enemies in invasive areas remains unclear. Here, we analyzed two invasive mealybugs (PSS-Phenacoccus solenopsis and PSI-Phenacoccus solani) and a specific parasitoid of P. solenopsis (Aenasius arizonensis) to verify this hypothesis under laboratory conditions. A. arizonensis preferred to parasitize PSS, but after 6 h, it also parasitized PSI female adults. The number of visits and parasitism rate was significantly higher for PSS than for PSI. However, the contact time was influenced by the natal host. The chemical volatiles emitted by the two hosts were different and may be an important factor for host choice. Offspring fitness, measured as emergence time, longevity, and hind tibia length, in those emerging from PSS was better in those emerging from PSI, but the emergence rate was higher in the latter. We supposed that A. arizonensis accepts and parasitizes low-quality hosts not because of an "incomplete" evaluation but because it may be more profitable to parasitize than not given circumstances; this may provide an opportunity for the control of a new invasive mealybug in the future.


2021 ◽  
Author(s):  
Philip J Gerrish ◽  
Benjamin J Galeota-Sprung ◽  
Paul D. Sniegowski ◽  
Julien Chevallier ◽  
Bernard Ycart

Shuffling one's genetic material with another individual seems a risky endeavor more likely to decrease than to increase offspring fitness. This intuitive argument is commonly employed to explain why the ubiquity of sex and recombination in nature is enigmatic. It is predicated on the notion that natural selection assembles selectively well-matched combinations of genes that recombination would break up resulting in low-fitness offspring -- a notion so intuitive that it is often stated in the literature as a self-evident premise. We show, however, that this common premise is only self evident on the surface and that, upon closer examination, it is fundamentally flawed: we find that natural selection in fact has an encompassing tendency to assemble selectively mismatched combinations of alleles; recombination breaks up these selectively mismatched combinations (on average), assembles selectively matched combinations, and should thus be favored. The new perspective our findings offer suggests that sex and recombination are not so enigmatic but are instead natural and unavoidable byproducts of natural selection.


Sign in / Sign up

Export Citation Format

Share Document