binary matroid
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Author(s):  
◽  
Susan Jowett

<p>We show that for every n ≥ 3 there is some number m such that every 4-connected binary matroid with an M (K3,m)-minor or an M* (K3,m)-minor and no rank-n minor isomorphic to M* (K3,n) blocked in a path-like way, has a minor isomorphic to one of the following: M (K4,n), M* (K4,n), the cycle matroid of an n-spoke double wheel, the cycle matroid of a rank-n circular ladder, the cycle matroid of a rank-n Möbius ladder, a matroid obtained by adding an element in the span of the petals of M (K3,n) but not in the span of any subset of these petals and contracting this element, or a rank-n matroid closely related to the cycle matroid of a double wheel, which we call a non graphic double wheel. We also show that for all n there exists m such that the following holds. If M is a 4-connected binary matroid with a sufficiently large spanning restriction that has a certain structure of order m that generalises a swirl-like flower, then M has one of the following as a minor: a rank-n spike, M (K4,n), M* (K4,n), the cycle matroid of an n-spoke double wheel, the cycle matroid of a rank-n circular ladder, the cycle matroid of a rank-n Möbius ladder, a matroid obtained by adding an element in the span of the petals of M (K3,n) but not in the span of any subset of these petals and contracting this element, a rank-n non graphic double wheel, M* (K3,n) blocked in a path-like way or a highly structured 3-connected matroid of rank n that we call a clam.</p>


2021 ◽  
Author(s):  
◽  
Susan Jowett

<p>We show that for every n ≥ 3 there is some number m such that every 4-connected binary matroid with an M (K3,m)-minor or an M* (K3,m)-minor and no rank-n minor isomorphic to M* (K3,n) blocked in a path-like way, has a minor isomorphic to one of the following: M (K4,n), M* (K4,n), the cycle matroid of an n-spoke double wheel, the cycle matroid of a rank-n circular ladder, the cycle matroid of a rank-n Möbius ladder, a matroid obtained by adding an element in the span of the petals of M (K3,n) but not in the span of any subset of these petals and contracting this element, or a rank-n matroid closely related to the cycle matroid of a double wheel, which we call a non graphic double wheel. We also show that for all n there exists m such that the following holds. If M is a 4-connected binary matroid with a sufficiently large spanning restriction that has a certain structure of order m that generalises a swirl-like flower, then M has one of the following as a minor: a rank-n spike, M (K4,n), M* (K4,n), the cycle matroid of an n-spoke double wheel, the cycle matroid of a rank-n circular ladder, the cycle matroid of a rank-n Möbius ladder, a matroid obtained by adding an element in the span of the petals of M (K3,n) but not in the span of any subset of these petals and contracting this element, a rank-n non graphic double wheel, M* (K3,n) blocked in a path-like way or a highly structured 3-connected matroid of rank n that we call a clam.</p>


2020 ◽  
Author(s):  
Dillon Mayhew ◽  
G Royle ◽  
Geoffrey Whittle

© 2017 Elsevier Inc. We consider some applications of our characterisation of the internally 4-connected binary matroids with no M(K3,3)-minor. We characterise the internally 4-connected binary matroids with no minor in M, where M is a subset of {M(K3,3),M⁎(K3,3),M(K5),M⁎(K5)} that contains either M(K3,3) or M⁎(K3,3). We also describe a practical algorithm for testing whether a binary matroid has a minor in M. In addition we characterise the growth-rate of binary matroids with no M(K3,3)-minor, and we show that a binary matroid with no M(K3,3)-minor has critical exponent over GF(2) at most equal to four.


2020 ◽  
Author(s):  
Dillon Mayhew ◽  
G Royle ◽  
Geoffrey Whittle

© 2017 Elsevier Inc. We consider some applications of our characterisation of the internally 4-connected binary matroids with no M(K3,3)-minor. We characterise the internally 4-connected binary matroids with no minor in M, where M is a subset of {M(K3,3),M⁎(K3,3),M(K5),M⁎(K5)} that contains either M(K3,3) or M⁎(K3,3). We also describe a practical algorithm for testing whether a binary matroid has a minor in M. In addition we characterise the growth-rate of binary matroids with no M(K3,3)-minor, and we show that a binary matroid with no M(K3,3)-minor has critical exponent over GF(2) at most equal to four.


10.37236/6992 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Robert Brijder ◽  
Lorenzo Traldi

The isotropic matroid $M[IAS(G)]$ of a looped simple graph $G$ is a binary matroid equivalent to the isotropic system of $G$. In general, $M[IAS(G)]$ is not regular, so it cannot be represented over fields of characteristic $\neq 2$. The ground set of $M[IAS(G)]$ is denoted $W(G)$; it is partitioned into 3-element subsets corresponding to the vertices of $G$. When the rank function of $M[IAS(G)]$ is restricted to subtransversals of this partition, the resulting structure is a multimatroid denoted $\mathcal{Z}_{3}(G)$. In this paper we prove that $G$ is a circle graph if and only if for every field $\mathbb{F}$, there is an $\mathbb{F}$-representable matroid with ground set $W(G)$, which defines $\mathcal{Z}_{3}(G)$ by restriction. We connect this characterization with several other circle graph characterizations that have appeared in the literature.


2019 ◽  
Author(s):  
Peter Nelson ◽  
Luke Postle ◽  
Tom Kelly ◽  
Frantisek Kardos ◽  
Marthe Bonamy

A well-known conjecture of András Gyárfás and David Sumner states that for every positive integer m and every finite tree T there exists k such that all graphs that do not contain the clique Km or an induced copy of T have chromatic number at most k. The conjecture has been proved in many special cases, but the general case has been open for several decades. The main purpose of this paper is to consider a natural analogue of the conjecture for matroids, where it turns out, interestingly, to be false. Matroids are structures that result from abstracting the notion of independent sets in vector spaces: that is, a matroid is a set M together with a nonempty hereditary collection I of subsets deemed to be independent where all maximal independent subsets of every set are equicardinal. They can also be regarded as generalizations of graphs, since if G is any graph and I is the collection of all acyclic subsets of E(G), then the pair (E(G),I) is a matroid. In fact, it is a binary matroid, which means that it can be represented as a subset of a vector space over F2. To do this, we take the space of all formal sums of vertices and represent the edge vw by the sum v+w. A set of edges is easily seen to be acyclic if and only if the corresponding set of sums is linearly independent. There is a natural analogue of an induced subgraph for matroids: an induced restriction of a matroid M is a subset M′ of M with the property that adding any element of M−M′ to M′ produces a matroid with a larger independent set than M′. The natural analogue of a tree with m edges is the matroid Im, where one takes a set of size m and takes all its subsets to be independent. (Note, however, that unlike with graph-theoretic trees there is just one such matroid up to isomorphism for each m.) Every graph can be obtained by deleting edges from a complete graph. Analogously, every binary matroid can be obtained by deleting elements from a finite binary projective geometry, that is, the set of all one-dimensional subspaces in a finite-dimensional vector space over F2. Finally, the analogue of the chromatic number for binary matroids is a quantity known as the critical number introduced by Crapo and Rota, which in the case of a graph G turns out to be ⌈log2(χ(G))⌉ -- that is, roughly the logarithm of its chromatic number. One of the results of the paper is that a binary matroid can fail to contain I3 or the Fano plane F7 (which is the simplest projective geometry) as an induced restriction, but also have arbitrarily large critical number. By contrast, the critical number is at most two if one also excludes the matroid associated with K5 as an induced restriction. The main result of the paper is a structural description of all simple binary matroids that have neither I3 nor F7 as an induced restriction.


2019 ◽  
Vol 55 (4) ◽  
pp. 865-880
Author(s):  
Colin Cooper ◽  
Alan Frieze ◽  
Wesley Pegden
Keyword(s):  

10.37236/6911 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
S. R. Kingan

Regular matroids are binary matroids with no minors isomorphic to the Fano matroid $F_7$ or its dual $F_7^*$. Seymour proved that 3-connected regular matroids are either graphs, cographs, or $R_{10}$, or else can be decomposed along a non-minimal exact 3-separation induced by $R_{12}$. Quasiregular matroids are binary matroids with no minor isomorphic to the self-dual binary matroid $E_4$. The class of quasiregular matroids properly contains the class of regular matroids. We prove that 3-connected quasiregular matroids are either graphs, cographs, or deletion-minors of $PG(3,2)$, $R_{17}$ or $M_{12}$ or else can be decomposed along a non-minimal exact 3-separation induced by $R_{12}$, $P_9$, or $P_9^*$.


10.37236/5937 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Robert Brijder ◽  
Lorenzo Traldi

The isotropic matroid $M[IAS(G)]$ of a graph $G$ is a binary matroid, which is equivalent to the isotropic system introduced by Bouchet. In this paper we discuss four notions of connectivity related to isotropic matroids and isotropic systems. We show that the isotropic system connectivity defined by Bouchet is equivalent to vertical connectivity of $M[IAS(G)]$, and if $G$ has at least four vertices, then $M[IAS(G)]$ is vertically 5-connected if and only if $G$ is prime (in the sense of Cunningham's split decomposition). We also show that $M[IAS(G)]$ is $3$-connected if and only if $G$ is connected and has neither a pendant vertex nor a pair of twin vertices. Our most interesting theorem is that if $G$ has $n\geq7$ vertices then $M[IAS(G)]$ is not vertically $n$-connected. This abstract-seeming result is equivalent to the more concrete assertion that $G$ is locally equivalent to a graph with a vertex of degree $<\frac{n-1}{2}$.


Author(s):  
Matthias Grezet ◽  
Ragnar Freij-Hollanti ◽  
Thomas Westerbäck ◽  
Camilla Hollanti

Sign in / Sign up

Export Citation Format

Share Document