scholarly journals The Structure of Binary Matroids with no Induced Claw or Fano Plane Restriction

2019 ◽  
Author(s):  
Peter Nelson ◽  
Luke Postle ◽  
Tom Kelly ◽  
Frantisek Kardos ◽  
Marthe Bonamy

A well-known conjecture of András Gyárfás and David Sumner states that for every positive integer m and every finite tree T there exists k such that all graphs that do not contain the clique Km or an induced copy of T have chromatic number at most k. The conjecture has been proved in many special cases, but the general case has been open for several decades. The main purpose of this paper is to consider a natural analogue of the conjecture for matroids, where it turns out, interestingly, to be false. Matroids are structures that result from abstracting the notion of independent sets in vector spaces: that is, a matroid is a set M together with a nonempty hereditary collection I of subsets deemed to be independent where all maximal independent subsets of every set are equicardinal. They can also be regarded as generalizations of graphs, since if G is any graph and I is the collection of all acyclic subsets of E(G), then the pair (E(G),I) is a matroid. In fact, it is a binary matroid, which means that it can be represented as a subset of a vector space over F2. To do this, we take the space of all formal sums of vertices and represent the edge vw by the sum v+w. A set of edges is easily seen to be acyclic if and only if the corresponding set of sums is linearly independent. There is a natural analogue of an induced subgraph for matroids: an induced restriction of a matroid M is a subset M′ of M with the property that adding any element of M−M′ to M′ produces a matroid with a larger independent set than M′. The natural analogue of a tree with m edges is the matroid Im, where one takes a set of size m and takes all its subsets to be independent. (Note, however, that unlike with graph-theoretic trees there is just one such matroid up to isomorphism for each m.) Every graph can be obtained by deleting edges from a complete graph. Analogously, every binary matroid can be obtained by deleting elements from a finite binary projective geometry, that is, the set of all one-dimensional subspaces in a finite-dimensional vector space over F2. Finally, the analogue of the chromatic number for binary matroids is a quantity known as the critical number introduced by Crapo and Rota, which in the case of a graph G turns out to be ⌈log2(χ(G))⌉ -- that is, roughly the logarithm of its chromatic number. One of the results of the paper is that a binary matroid can fail to contain I3 or the Fano plane F7 (which is the simplest projective geometry) as an induced restriction, but also have arbitrarily large critical number. By contrast, the critical number is at most two if one also excludes the matroid associated with K5 as an induced restriction. The main result of the paper is a structural description of all simple binary matroids that have neither I3 nor F7 as an induced restriction.

10.37236/947 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Mark E. Watkins ◽  
Xiangqian Zhou

The distinguishing number $\Delta(X)$ of a graph $X$ is the least positive integer $n$ for which there exists a function $f:V(X)\to\{0,1,2,\cdots,n-1\}$ such that no nonidentity element of $\hbox{Aut}(X)$ fixes (setwise) every inverse image $f^{-1}(k)$, $k\in\{0,1,2,\cdots,n-1\}$. All infinite, locally finite trees without pendant vertices are shown to be 2-distinguishable. A proof is indicated that extends 2-distinguishability to locally countable trees without pendant vertices. It is shown that every infinite, locally finite tree $T$ with finite distinguishing number contains a finite subtree $J$ such that $\Delta(J)=\Delta(T)$. Analogous results are obtained for the distinguishing chromatic number, namely the least positive integer $n$ such that the function $f$ is also a proper vertex-coloring.


1977 ◽  
Vol 16 (1) ◽  
pp. 79-81
Author(s):  
Ronald Beattie

It is known that, for an arbitrary convergence space X, the vector space generated by X is dense in LcCc (X) where both C(X) and its dual space carry the continuous convergence structure. In this note, a natural analogue formulated for the operator space L(Cc(X), Cc(X)) is considered, namely: is the vector space generated by the composition operators associated to the continuous mappings in C(X, X) dense in Lc (Cc (X), Cc (X)) ? This question is answered in the negative by a counterexample.


1961 ◽  
Vol 4 (3) ◽  
pp. 261-264
Author(s):  
Jonathan Wild

Let E be a finite dimensional vector space over an arbitrary field. In E a bilinear form is given. It associates with every sub s pa ce V its right orthogonal sub space V* and its left orthogonal subspace *V. In general we cannot expect that dim V* = dim *V. However this relation will hold in some interesting special cases.


1992 ◽  
Vol 35 (4) ◽  
pp. 560-568 ◽  
Author(s):  
C. Thas

AbstractThe main result of this paper is a theorem about three conies in the complex or the real complexified projective plane. Is this theorem new? We have never seen it anywhere before. But since the golden age of projective geometry so much has been published about conies that it is unlikely that no one noticed this result. On the other hand, why does it not appear in the literature? Anyway, it seems interesting to "repeat" this property, because several theorems in connection with straight lines and (or) conies in projective, affine or euclidean planes are in fact special cases of this theorem. We give a few classical examples: the theorems of Pappus-Pascal, Desargues, Pascal (or its converse), the Brocard points, the point of Miquel. Finally, we have never seen in the literature a proof of these theorems using the same short method see the proof of the main theorem).


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Olaf Hohm ◽  
Vladislav Kupriyanov ◽  
Dieter Lüst ◽  
Matthias Traube

We construct L∞ algebras for general “initial data” given by a vector space equipped with an antisymmetric bracket not necessarily satisfying the Jacobi identity. We prove that any such bracket can be extended to a 2-term L∞ algebra on a graded vector space of twice the dimension, with the 3-bracket being related to the Jacobiator. While these L∞ algebras always exist, they generally do not realize a nontrivial symmetry in a field theory. In order to define L∞ algebras with genuine field theory realizations, we prove the significantly more general theorem that if the Jacobiator takes values in the image of any linear map that defines an ideal there is a 3-term L∞ algebra with a generally nontrivial 4-bracket. We discuss special cases such as the commutator algebra of octonions, its contraction to the “R-flux algebra,” and the Courant algebroid.


2014 ◽  
Vol 07 (04) ◽  
pp. 1450060
Author(s):  
P. P. Malavadkar ◽  
M. M. Shikare ◽  
S. B. Dhotre

The splitting operation on an n-connected binary matroid may not yield an n-connected binary matroid. In this paper, we characterize n-connected binary matroids which yield n-connected binary matroids by the generalized splitting operation.


10.37236/6911 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
S. R. Kingan

Regular matroids are binary matroids with no minors isomorphic to the Fano matroid $F_7$ or its dual $F_7^*$. Seymour proved that 3-connected regular matroids are either graphs, cographs, or $R_{10}$, or else can be decomposed along a non-minimal exact 3-separation induced by $R_{12}$. Quasiregular matroids are binary matroids with no minor isomorphic to the self-dual binary matroid $E_4$. The class of quasiregular matroids properly contains the class of regular matroids. We prove that 3-connected quasiregular matroids are either graphs, cographs, or deletion-minors of $PG(3,2)$, $R_{17}$ or $M_{12}$ or else can be decomposed along a non-minimal exact 3-separation induced by $R_{12}$, $P_9$, or $P_9^*$.


1991 ◽  
Vol 34 (2) ◽  
pp. 265-274
Author(s):  
F. A. Sherk

AbstractA complete answer is given to the question: Under what circumstances is the product of three harmonic homologies in PG(2, F) again a harmonic homology ? This is the natural question to ask in seeking a generalization to projective geometry of the Three Reflection Theorem of metric geometry. It is found that apart from two familiar special cases, and with one curious exception, the necessary and sufficient conditions on the harmonic homologies produce exactly the Three Reflection Theorem.


1972 ◽  
Vol 15 (3) ◽  
pp. 349-354 ◽  
Author(s):  
E. J. Cockayne

By an r-graph G we mean a finite set V(G) of elements called vertices and a set E(G) of some of the r-subsets of V(G) called edges. This paper defines certain colour classes of r-graphs which connect the material of a variety of recent graph theoretic literature in that many existing results may be reformulated as structural properties of the classes for some special cases of r-graphs. It is shown that the concepts of Ramsey Numbers, chromatic number and index may be defined in terms of these classes. These concepts and some of their properties are generalized. The final subsection compares two existing bounds for the chromatic number of a graph.


1998 ◽  
Vol 7 (4) ◽  
pp. 485-497 ◽  
Author(s):  
HAIDONG WU

A cocircuit C* in a matroid M is said to be non-separating if and only if M[setmn ]C*, the deletion of C* from M, is connected. A vertex-triad in a matroid is a three-element non-separating cocircuit. Non-separating cocircuits in binary matroids correspond to vertices in graphs. Let C be a circuit of a 3-connected binary matroid M such that [mid ]E(M)[mid ][ges ]4 and, for all elements x of C, the deletion of x from M is not 3-connected. We prove that C meets at least two vertex-triads of M. This gives direct binary matroid generalizations of certain graph results of Halin, Lemos, and Mader. For binary matroids, it also generalizes a result of Oxley. We also prove that a minimally 3-connected binary matroid M which has at least four elements has at least ½r*(M)+1 vertex-triads, where r*(M) is the corank of the matroid M. An immediate consequence of this result is the following result of Halin: a minimally 3-connected graph with n vertices has at least 2n+6/5 vertices of degree three. We also generalize Tutte's Triangle Lemma for general matroids.


Sign in / Sign up

Export Citation Format

Share Document