scholarly journals On convergence of branched continued fraction expansions of Horn's hypergeometric function $H_3$ ratios

2021 ◽  
Vol 13 (3) ◽  
pp. 642-650
Author(s):  
T.M. Antonova

The paper deals with the problem of convergence of the branched continued fractions with two branches of branching which are used to approximate the ratios of Horn's hypergeometric function $H_3(a,b;c;{\bf z})$. The case of real parameters $c\geq a\geq 0,$ $c\geq b\geq 0,$ $c\neq 0,$ and complex variable ${\bf z}=(z_1,z_2)$ is considered. First, it is proved the convergence of the branched continued fraction for ${\bf z}\in G_{\bf h}$, where $G_{\bf h}$ is two-dimensional disk. Using this result, sufficient conditions for the uniform convergence of the above mentioned branched continued fraction on every compact subset of the domain $\displaystyle H=\bigcup_{\varphi\in(-\pi/2,\pi/2)}G_\varphi,$ where \[\begin{split} G_{\varphi}=\big\{{\bf z}\in\mathbb{C}^{2}:&\;{\rm Re}(z_1e^{-i\varphi})<\lambda_1 \cos\varphi,\; |{\rm Re}(z_2e^{-i\varphi})|<\lambda_2 \cos\varphi, \\ &\;|z_k|+{\rm Re}(z_ke^{-2i\varphi})<\nu_k\cos^2\varphi,\;k=1,2;\; \\ &\; |z_1z_2|-{\rm Re}(z_1z_2e^{-2\varphi})<\nu_3\cos^{2}\varphi\big\}, \end{split}\] are established.

Author(s):  
Volodymyr Hladun ◽  
Nataliya Hoyenko ◽  
Levko Ventyk ◽  
Oleksandra Manziy

In the paper, using some recurrent relations, the expansion of the hypergeometric Appel function F4 (1,2;2,2; z1, z2 ) into a branched continued fraction of special form is constructed. Explicit formulas for the coefficients of constructed development are obtained. The structure of the obtained branched continued fraction is investigated. The values of the suitable fractions and the corresponding partial sums of the hypergeometric series at different points of the two-dimensional complex space are calculated. A comparative analysis of the obtained values is carried out, the results of which confirm the efficiency of using branched continued fractions to calculate the values of the hypergeometric function F4 (1,2;2,2; z1, z2 ) in space C2.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 310
Author(s):  
Tamara Antonova ◽  
Roman Dmytryshyn ◽  
Serhii Sharyn

The paper is related to the classical problem of the rational approximation of analytic functions of one or several variables, particulary the issues that arise in the construction and studying of continued fraction expansions and their multidimensional generalizations—branched continued fraction expansions. We used combinations of three- and four-term recurrence relations of the generalized hypergeometric function 3F2 to construct the branched continued fraction expansions of the ratios of this function. We also used the concept of correspondence and the research method to extend convergence, already known for a small region, to a larger region. As a result, we have established some convergence criteria for the expansions mentioned above. It is proved that the branched continued fraction expansions converges to the functions that are an analytic continuation of the ratios mentioned above in some region. The constructed expansions can approximate the solutions of certain differential equations and analytic functions, which are represented by generalized hypergeometric function 3F2. To illustrate this, we have given a few numerical experiments at the end.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 148
Author(s):  
Tamara Antonova ◽  
Roman Dmytryshyn ◽  
Victoriia Kravtsiv

The paper deals with the problem of construction and investigation of branched continued fraction expansions of special functions of several variables. We give some recurrence relations of Horn hypergeometric functions H3. By these relations the branched continued fraction expansions of Horn’s hypergeometric function H3 ratios have been constructed. We have established some convergence criteria for the above-mentioned branched continued fractions with elements in R2 and C2. In addition, it is proved that the branched continued fraction expansions converges to the functions which are an analytic continuation of the above-mentioned ratios in some domain (here domain is an open connected set). Application for some system of partial differential equations is considered.


2015 ◽  
Vol 7 (1) ◽  
pp. 72-77
Author(s):  
R.I. Dmytryshyn

The fact that the values of the approximates of the positive definite branched continued fraction of special form are all in a certain circle is established for the certain conditions. The uniform convergence of branched continued fraction of special form, which is a particular case of the mentioned fraction, in the some limited parabolic region is investigated.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 255
Author(s):  
Dan Lascu ◽  
Gabriela Ileana Sebe

We investigate the efficiency of several types of continued fraction expansions of a number in the unit interval using a generalization of Lochs theorem from 1964. Thus, we aim to compare the efficiency by describing the rate at which the digits of one number-theoretic expansion determine those of another. We study Chan’s continued fractions, θ-expansions, N-continued fractions, and Rényi-type continued fractions. A central role in fulfilling our goal is played by the entropy of the absolutely continuous invariant probability measures of the associated dynamical systems.


2018 ◽  
Vol 26 (1) ◽  
pp. 18 ◽  
Author(s):  
R.I. Dmytryshyn

In this paper, we investigate the convergence of multidimensional regular С-fractions with independent variables, which are a multidimensional generalization of regular С-fractions. These branched continued fractions are an efficient tool for the approximation of multivariable functions, which are represented by formal multiple power series. We have shown that the intersection of the interior of the parabola and the open disk is the domain of convergence of a multidimensional regular С-fraction with independent variables. And, in addition, we have shown that the interior of the parabola is the domain of convergence of a branched continued fraction, which is reciprocal to the multidimensional regular С-fraction with independent variables.


2009 ◽  
Vol 29 (5) ◽  
pp. 1451-1478 ◽  
Author(s):  
FRANCESCO CELLAROSI

AbstractWe prove the existence of the limiting distribution for the sequence of denominators generated by continued fraction expansions with even partial quotients, which were introduced by Schweiger [Continued fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg4 (1982), 59–70; On the approximation by continues fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg1–2 (1984), 105–114] and studied also by Kraaikamp and Lopes [The theta group and the continued fraction expansion with even partial quotients. Geom. Dedicata59(3) (1996), 293–333]. Our main result is proven following the strategy used by Sinai and Ulcigrai [Renewal-type limit theorem for the Gauss map and continued fractions. Ergod. Th. & Dynam. Sys.28 (2008), 643–655] in their proof of a similar renewal-type theorem for Euclidean continued fraction expansions and the Gauss map. The main steps in our proof are the construction of a natural extension of a Gauss-like map and the proof of mixing of a related special flow.


1937 ◽  
Vol 30 ◽  
pp. vi-x
Author(s):  
C. G. Darwin

1. If the approximate numerical value of e is expressed as a continued fraction the result isand it was in finding the proof that the sequence extends correctly to infinity that the following work was done. First the continued fraction may be simplified by setting down the difference equations for numerator and denominator as usual, and eliminating two out of every successive three equations. A difference equation is thus formed between the first, fourth, seventh, tenth … convergents , and this equation will generate another continued fraction. After a little rearrangement of the first two members it appears that (1) implies2. We therefore consider the continued fractionwhich includes (2), and also certain continued fractions which were discussed by Prof. Turnbull. He evaluated them without solving the difference equations, and it is the purpose here to show how the difference equations may be solved completely both in his cases and in the different problem of (2). It will appear that the work is connected with certain types of hypergeometric function, but I shall not go into this deeply.


2020 ◽  
Vol 54 (1) ◽  
pp. 3-14
Author(s):  
R. I. Dmytryshyn ◽  
T. M. Antonova

The paper deals with the problem of obtaining error bounds for branched continued fraction of the form $\sum_{i_1=1}^N\frac{a_{i(1)}}{1}{\atop+}\sum_{i_2=1}^{i_1}\frac{a_{i(2)}}{1}{\atop+}\sum_{i_3=1}^{i_2}\frac{a_{i(3)}}{1}{\atop+}\ldots$. By means of fundamental inequalities method the truncation error bounds are obtained for the above mentioned branched continued fraction providing its elements belong to some rectangular sets ofa complex plane. Applications are considered for several classes of branched continued fraction expansions including the multidimensional \emph{S}-, \emph{A}-, \emph{J}-fractions with independent variables.


2021 ◽  
Vol 58 (2) ◽  
pp. 230-245
Author(s):  
Khalil Ayadi ◽  
Chiheb Ben Bechir ◽  
Iheb Elouaer

We exhibit some explicit continued fraction expansions and their representation series in different fields. Some of these continued fractions have a type of symmetry, known as folding symmetry. We will extracted those whose are specialized.


Sign in / Sign up

Export Citation Format

Share Document