scholarly journals Lamb-dip cavity ring-down spectroscopy of acetylene at 1.4 μm

Author(s):  
Eugenio Fasci ◽  
Stefania Gravina ◽  
Giuseppe Porzio ◽  
Antonio Castrillo ◽  
Livio Gianfrani

Abstract Doppler-free saturated-absorption Lamb dips are observed for weak vibration-rotation transitions of C2H2 between 7167 and 7217 cm−1, using a frequencycomb assisted cavity ring-down spectrometer based on the use of a pair of phase-locked diode lasers. We measured the absolute center frequency of sixteen lines belonging to the 2ν3 + ν15 band, targeting ortho and para states of the molecule. Line pairs of the P and Q branches were selected so as to form a “V”-scheme, sharing the lower energy level. Such a choice made it possible to determine the rotational energy separations of the excited vibrational state for J-values from 11 to 20. Line-center frequencies are determined with an overall uncertainty between 2 and 13 kHz. This is over three order of magnitude more accurate than previous experimental studies in the spectral region around the wavelength of 1.4 μm. The retrieved energy separations provide a stringent test of the so-called MARVEL method recently applied to acetylene.

2018 ◽  
Vol 84 (10) ◽  
pp. 23-28
Author(s):  
D. A. Golentsov ◽  
A. G. Gulin ◽  
Vladimir A. Likhter ◽  
K. E. Ulybyshev

Destruction of bodies is accompanied by formation of both large and microscopic fragments. Numerous experiments on the rupture of different samples show that those fragments carry a positive electric charge. his phenomenon is of interest from the viewpoint of its potential application to contactless diagnostics of the early stage of destruction of the elements in various technical devices. However, the lack of understanding the nature of this phenomenon restricts the possibility of its practical applications. Experimental studies were carried out using an apparatus that allowed direct measurements of the total charge of the microparticles formed upon sample rupture and determination of their size and quantity. The results of rupture tests of duralumin and electrical steel showed that the size of microparticles is several tens of microns, the particle charge per particle is on the order of 10–14 C, and their amount can be estimated as the ratio of the cross-sectional area of the sample at the point of discontinuity to the square of the microparticle size. A model of charge formation on the microparticles is developed proceeding from the experimental data and current concept of the electron gas in metals. The model makes it possible to determine the charge of the microparticle using data on the particle size and mechanical and electrical properties of the material. Model estimates of the total charge of particles show order-of-magnitude agreement with the experimental data.


1968 ◽  
Vol 46 (11) ◽  
pp. 1331-1340 ◽  
Author(s):  
R. L. Armstrong ◽  
S. M. Blumenfeld ◽  
C. G. Gray

Extensive measurements of the methane ν3 and ν4 fundamental vibration–rotation bands in CH4–He mixtures and the ν3 band in CH4–He, CH4–N2, and CD4–He mixtures have been carried out in infrared absorption at 295 °K to pressures of 3000 atm. Some profiles of the ν3 band in CH4–Ar mixtures and in pure CH4 have also been obtained. Rotational correlation functions, band moments, and intermolecular mean squared torques have been determined from the ν3 band profiles. Theoretical calculations of the mean squared torque due to anisotropic multipolar, induction and dispersion interactions have been carried out. The theoretical and experimental torques are in order-of-magnitude agreement for the CH4–N2 and CH4–CH4 systems; for CH4–He, CD4–He, and CH4–Ar the theoretical values are two to three orders of magnitude too small to account for the experimental values, indicating that in these cases the dominant contribution to the torques is given by the anisotropic overlap forces.


2021 ◽  
Vol 15 (3) ◽  
pp. 1-31
Author(s):  
Haida Zhang ◽  
Zengfeng Huang ◽  
Xuemin Lin ◽  
Zhe Lin ◽  
Wenjie Zhang ◽  
...  

Driven by many real applications, we study the problem of seeded graph matching. Given two graphs and , and a small set of pre-matched node pairs where and , the problem is to identify a matching between and growing from , such that each pair in the matching corresponds to the same underlying entity. Recent studies on efficient and effective seeded graph matching have drawn a great deal of attention and many popular methods are largely based on exploring the similarity between local structures to identify matching pairs. While these recent techniques work provably well on random graphs, their accuracy is low over many real networks. In this work, we propose to utilize higher-order neighboring information to improve the matching accuracy and efficiency. As a result, a new framework of seeded graph matching is proposed, which employs Personalized PageRank (PPR) to quantify the matching score of each node pair. To further boost the matching accuracy, we propose a novel postponing strategy, which postpones the selection of pairs that have competitors with similar matching scores. We show that the postpone strategy indeed significantly improves the matching accuracy. To improve the scalability of matching large graphs, we also propose efficient approximation techniques based on algorithms for computing PPR heavy hitters. Our comprehensive experimental studies on large-scale real datasets demonstrate that, compared with state-of-the-art approaches, our framework not only increases the precision and recall both by a significant margin but also achieves speed-up up to more than one order of magnitude.


2021 ◽  
pp. 61-64
Author(s):  
M.S. Ladygina ◽  
Yu.V. Petrov ◽  
D.V. Yeliseev ◽  
V.A. Makhlai ◽  
N.V. Kulik ◽  
...  

Present experimental studies are aimed at analysis of hydrogen plasma stream parameters in various working regimes of QSPA-M operation. Temporal distributions of plasma electron density are reconstructed with optical emission spectroscopy. The magnetic field influence on plasma streams parameters is analyzed. It is shown that in regimes with additional magnetic field the plasma electron density increases by an order of magnitude in comparison with a density value without magnetic field. The plasma velocity and energy density parameters as well as their temporal behaviors were estimatedin different operating regimes of QSPA-M facility. Features of plasma visible radiation were analyzed. This information is important for QSPA-M applications in experiments on interaction of powerful plasma streams with material surfaces.


1982 ◽  
Vol 60 (2) ◽  
pp. 239-244 ◽  
Author(s):  
I. N. Siara ◽  
R. U. Dubois ◽  
L. Krause

The temperature dependence of cross sections for 72P1/2 ↔ 72P3/2 excitation transfer in cesium, as well as the effective quenching of these states, induced in collisions with H2, N2, CH4, and CD4 molecules have been investigated in a series of sensitized fluorescence experiments over a temperature range 390–640 K. The 72P mixing cross sections are of the order of 10−15 cm2 and exceed by at least one order of magnitude similar cross sections for mixing by collisions with Ne, Ar, Kr, and Xe. The large sizes of the mixing cross sections and their variation with temperature are ascribed to a phenomenon of electronic-to-rotational energy transfer.


1992 ◽  
Vol 336 (1277) ◽  
pp. 275-292 ◽  

This paper presents a planar architectural model for an activated skeletal muscle, with mechanical equilibrium throughout the muscle belly. The model can predict the shape of the muscle fibres and tendinous sheets as well as the internal pressure distribution in the central longitudinal plane (perpendicular to the tendinous sheets) of uni- and bipennate muscle bellies. Mechanically stable solutions for muscle architectures were calculated by equating the pressure developed by curved muscle fibres with the pressure under a curved tendinous sheet. The pressure distribution under a tendinous sheet is determined by its tension, its curvature and the tensile stress of the attached muscle fibres. Dissections showed a good resemblance of the architecture of embalmed muscles with those from our simulations. Calculated maximum pressures are in the same order of magnitude as pressure measurements from the literature. Our model predicts that intramuscular blood flow can be blocked during sustained contraction, as several experimental studies have indeed demonstrated. The volume fractions of muscle fibres and interfibre space in the muscle belly were also calculated. The planar models predict a too low volume fraction for the muscle fibres (about 45% for the bipennate models with a straight central aponeurosis, and about 60% for the simulated unipennate muscle). It is discussed how, in a real muscle, this volume problem can be solved by a special three-dimensional arrangement of muscle fibres in combination with varying widths of the tendinous sheets.


2004 ◽  
Vol 824 ◽  
Author(s):  
Danièle Roudil ◽  
Xavier Deschanels ◽  
Patrick Trocellier ◽  
Fran ç ois Jomard ◽  
Annick Boutry ◽  
...  

AbstractThe behaviour and diffusion mechanisms of helium in nuclear ceramics, such as uranium dioxide spent fuel matrix and zirconolite for the specific conditioning of minor actinides, significantly impact the possible evolution of those matrices in interim storage or disposal conditions. In the framework of spent fuel storage studies, the additional diffusion of gas and fission products in uranium dioxidematrix is also an essential aspect of the R&D. Specific experimental studies have been conducted, devoted to thermal diffusion under 1000 C. Data processing methods, lead to helium diffusion coefficient and associated activation energy of 1.05 eV in the zirconolite and 2 eV in UO2. Comparativelywith the uranium dioxide matrix, the helium diffusion coefficient in zirconolite is 1 to 100 million times higher; this parameter will have to be taken into account to dimension the waste form. Diffusion coefficients measurements between 800 C and 1000 C, investigated by SIMS, showed a very slow diffusion of volatile fission products Xe, I, Te and Cs, with coefficients two or three order of magnitude lower than for helium.


2009 ◽  
Vol 9 (1) ◽  
pp. 1273-1300
Author(s):  
H. Du ◽  
F. Yu

Abstract. Nucleation is an important source of atmospheric aerosols which have significant climatic and health implications. Despite intensive theoretical and field studies during past decades, the dominant nucleation mechanism in the lower troposphere remains to be mysterious. Several recent laboratory studies on atmospheric nucleation may shed light on this important problem. However, the most interesting finding from those studies was based on the H2SO4 concentration whose accuracy has not yet been evaluated by any other methods. Moreover, the threshold H2SO4 concentration needed to reach the same degree of nucleation reported by two separate nucleation studies varies by about one order of magnitude. In this study, we apply a recently updated kinetic nucleation model to study the nucleation phenomena observed in those recent experiments. We show that the H2SO4 concentration can be estimated with a higher level of accuracy with the kinetic model by constraining the simulated particle size distributions with observed ones. We find that the H2SO4 concentration was underestimated in those studies by a factor of ~2 to 4. More importantly, by comparing the derived thermodynamic properties associated with the nucleation process, we conclude that different unknown species may participate in the two separate nucleation experimental studies, which may explain the large difference in the reported threshold H2SO4 concentration. Although the unknown species involved has yet to be identified, the derived values of thermodynamic properties can serve as a valuable guideline for the search of their chemical identities using advanced quantum-chemical approaches.


2019 ◽  
Vol 219 (3) ◽  
pp. 1818-1835
Author(s):  
Hélène Massol

SUMMARY Explosive eruptions involve the fragmentation of magma that changes the flow regime from laminar to turbulent within the volcanic conduit during ascent. If the gas volume fraction is high, magma fragments and the eruption style is explosive, but if not, the magma flows effusively out of the vent. Gas escape processes depend on how the magma can rupture, and recent experimental studies measured rupture stress thresholds of the order of a few megapascals. It is thus critical to model the gas content and state of stress evolution in the flowing magma within the conduit. We present a new self-consistent model of an explosive eruption from the magma chamber to the surface, based on a critical gas volume fraction. Our model allows to explore irregular geometries below the fragmentation level (2-D). We first compare our model with classical 1-D models of explosive eruptions and find that in the case of straight conduits and fragmented flows, 1-D models are accurate enough to model the gas pressure and vertical velocity distribution in the conduit. However, in the case of an irregular conduit shape at depth, 2-D models are necessary. Despite a certain conduit radius visible at the surface, very different stress fields within the flow could be present depending upon the position and shape of any conduit irregularities. Stresses of the order of more than 1 MPa can be attained in some locations. High tensile stresses are located at the centre of the conduit, while high shear stresses are located at the conduit walls leading to several potential rupture locations. Due to the interplay between the velocity field and decompression rate, similar conduit radius visible at the surface might also lead to very different fragmentation depths with a difference of more than 1500 m between an enlarged conduit shape at some depth and a straight conduit. At depth, different conduit sizes might lead to the same order of magnitude for the mass flux, depending on the conduit geometry.


Sign in / Sign up

Export Citation Format

Share Document