scholarly journals Periodic points of post-critically algebraic holomorphic endomorphisms

2021 ◽  
pp. 1-33
Author(s):  
VAN TU LE

Abstract A holomorphic endomorphism of ${{\mathbb {CP}}}^n$ is post-critically algebraic if its critical hypersurfaces are periodic or preperiodic. This notion generalizes the notion of post-critically finite rational maps in dimension one. We will study the eigenvalues of the differential of such a map along a periodic cycle. When $n=1$ , a well-known fact is that the eigenvalue along a periodic cycle of a post-critically finite rational map is either superattracting or repelling. We prove that, when $n=2$ , the eigenvalues are still either superattracting or repelling. This is an improvement of a result by Mattias Jonsson [Some properties of 2-critically finite holomorphic maps of P2. Ergod. Th. & Dynam. Sys.18(1) (1998), 171–187]. When $n\geq 2$ and the cycle is outside the post-critical set, we prove that the eigenvalues are repelling. This result improves one obtained by Fornæss and Sibony [Complex dynamics in higher dimension. II. Modern Methods in Complex Analysis (Princeton, NJ, 1992) (Annals of Mathematics Studies, 137). Ed. T. Bloom, D. W. Catlin, J. P. D’Angelo and Y.-T. Siu, Princeton University Press, 1995, pp. 135–182] under a hyperbolicity assumption on the complement of the post-critical set.

Author(s):  
Yunping Jiang

This chapter reviews the characterization of geometrically finite rational maps and then outlines a framework for characterizing holomorphic maps. Whereas Thurston's methods are based on estimates of hyperbolic distortion in hyperbolic geometry, the framework suggested here is based on controlling conformal distortion in spherical geometry. The new framework enables one to relax two of Thurston's assumptions: first, that the iterated map has finite degree and, second, that its post-critical set is finite. Thus, it makes possible to characterize certain rational maps for which the post-critical set is not finite as well as certain classes of entire and meromorphic coverings for which the iterated map has infinite degree.


2017 ◽  
Vol 39 (4) ◽  
pp. 1002-1019
Author(s):  
JUNGHUN LEE

The aim of this paper is to show $J$-stability of expanding rational maps over an algebraically closed, complete and non-Archimedean field of characteristic zero. More precisely, we will show that for any expanding rational map, there exists a neighborhood of it such that the dynamics on the Julia set of any rational map in the neighborhood is the same as the dynamics of the expanding rational map as a non-Archimedean analogue of a corollary of Mañé, Sad and Sullivan’s result [On the dynamics of rational maps. Ann. Sci. Éc. Norm. Supér. (4)16 (1983), 193–217] in complex dynamics.


Author(s):  
Alexandre Dezotti ◽  
Pascale Roesch

This chapter deals with the question of local connectivity of the Julia set of polynomials and rational maps. It discusses when the Julia set of a rational map is considered connected but not locally connected. The question of the local connectivity of the Julia set has been studied extensively for quadratic polynomials, but there is still no complete characterization of when a quadratic polynomial has a connected and locally connected Julia set. This chapter thus proposes some conjectures and develops a model of non-locally connected Julia sets in the case of infinitely renormalizable quadratic polynomials. This model presents the structure of what the post-critical set in that setting should be.


2002 ◽  
Vol 85 (2) ◽  
pp. 467-492 ◽  
Author(s):  
TIM BEDFORD ◽  
ALBERT M. FISHER ◽  
MARIUSZ URBAŃSKI

We define the scenery flow space at a point z in the Julia set J of a hyperbolic rational map $T : \mathbb{C} \to \mathbb{C}$ with degree at least 2, and more generally for T a conformal mixing repellor.We prove that, for hyperbolic rational maps, except for a few exceptional cases listed below, the scenery flow is ergodic. We also prove ergodicity for almost all conformal mixing repellors; here the statement is that the scenery flow is ergodic for the repellors which are not linear nor contained in a finite union of real-analytic curves, and furthermore that for the collection of such maps based on a fixed open set U, the ergodic cases form a dense open subset of that collection. Scenery flow ergodicity implies that one generates the same scenery flow by zooming down towards almost every z with respect to the Hausdorff measure $H^d$, where d is the dimension of J, and that the flow has a unique measure of maximal entropy.For all conformal mixing repellors, the flow is loosely Bernoulli and has topological entropy at most d. Moreover the flow at almost every point is the same up to a rotation, and so as a corollary, one has an analogue of the Lebesgue density theorem for the fractal set, giving a different proof of a theorem of Falconer.2000 Mathematical Subject Classification: 37F15, 37F35, 37D20.


2011 ◽  
Vol 32 (5) ◽  
pp. 1711-1726 ◽  
Author(s):  
WENJUAN PENG ◽  
YONGCHENG YIN ◽  
YU ZHAI

AbstractIn this paper, taking advantage of quasi-conformal surgery, we prove that each non-hyperbolic rational map with a Cantor Julia set can be approximated by hyperbolic rational maps with Cantor Julia sets of the same degree.


1992 ◽  
Vol 12 (1) ◽  
pp. 39-52 ◽  
Author(s):  
L. Baribeau ◽  
T. J. Ransford

AbstractLet {RA} be an analytic family of rational maps and denote by j(λ) the Julia set of Rλ. We prove that the upper semicontinuous regularization j(λ) of j(λ) (which coincides with j(λ) for all λ in a dense open set) is a meromorphic multifunction, and give applications that illustrate the instability of Julia sets. In a similar vein, we also consider forward orbits of critical points and limit sets of Kleinian groups.


2009 ◽  
Vol 80 (3) ◽  
pp. 454-461 ◽  
Author(s):  
XIAOGUANG WANG

AbstractIt is shown that a rational map of degree at least 2 admits a meromorphic invariant line field if and only if it is conformally conjugate to either an integral Lattès map, a power map, or a Chebyshev polynomial.


1996 ◽  
Vol 16 (4) ◽  
pp. 833-848 ◽  
Author(s):  
Sebastian Van Strien

AbstractIn this paper we shall give examples of rational maps on the Riemann sphere and also of polynomial interval maps which are transitive but not ergodic with respect to Lebesgue measure. In fact, these maps have two disjoint compact attractors whose attractive basins are ‘intermingled’, each having a positive Lebesgue measure in every open set. In addition, we show that there exists a real bimodal polynomial with Fibonacci dynamics (of the type considered by Branner and Hubbard), whose Julia set is totally disconnected and has positive Lebesgue measure. Finally, we show that there exists a rational map associated to the Newton iteration scheme corresponding to a polynomial whose Julia set has positive Lebesgue measure.


1997 ◽  
Vol 17 (2) ◽  
pp. 253-267 ◽  
Author(s):  
A. G. ABERCROMBIE ◽  
R. NAIR

A rational map $T$ of degree not less than two is known to preserve a measure, called the conformal measure, equivalent to the Hausdorff measure of the same dimension as its Julia set $J$ and supported there, with respect to which it is ergodic and even exact. As a consequence of Birkhoff's pointwise ergodic theorem almost every $z$ in $J$ with respect to the conformal measure has an orbit that is asymptotically distributed on $J$ with respect to this measure. As a counterpoint to this, the following result is established in this paper. Let $\Omega(z)=\Omega_{T}(z)$ denote the closure of the set $\{T^{n}(z):n=1,2,\ldots\}$. For any expanding rational map $T$ of degree at least two we set \[ S(z_{0})=\{z\in J:z_{0}\not\in \Omega_{T}(z)\}. \] We show that for all $z_{0}$ the Hausdorff dimensions of $S(z)$ and $J$ are equal.


Sign in / Sign up

Export Citation Format

Share Document