linear cavity
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 36)

H-INDEX

26
(FIVE YEARS 2)

2022 ◽  
Vol 68 ◽  
pp. 102780
Author(s):  
Jianming Shang ◽  
Zhengkang Wang ◽  
Siqiao Li ◽  
En Zhu ◽  
Song Yu ◽  
...  

2021 ◽  
Author(s):  
Jialiang Lv ◽  
chuansheng dai ◽  
Hongxun Li ◽  
Xuexiao Ma ◽  
Jiaqiang lin ◽  
...  

Optik ◽  
2021 ◽  
pp. 168492
Author(s):  
Yuan Lu ◽  
Tianhao Dong ◽  
Jialiang Lv ◽  
Lixin Xu ◽  
Chun Gu ◽  
...  

Laser Physics ◽  
2021 ◽  
Vol 32 (1) ◽  
pp. 015101
Author(s):  
Gangxiao Yan ◽  
Weihua Zhang ◽  
Peng Li ◽  
Qiuhao Jiang ◽  
Meng Wu ◽  
...  

Abstract A switchable and tunable erbium-doped fiber laser with a linear cavity based on fiber Bragg gratings embedded in Sagnac rings is proposed and experimentally verified. Due to the stress birefringence effect and the polarized hole burning effect, which are introduced into the single-mode fiber in the polarization controllers (PCs) by the PCs, the designed laser can achieve seven kinds of laser-states output including three kinds of single-wavelength laser states, three kinds of dual-wavelength laser states and one kind of triple-wavelength laser state. The optical signal-to-noise ratios of the output wavelengths are all higher than 52 dB, and the wavelength shifts are all less than 0.04 nm. Furthermore, the temperature tuning of the wavelength range is also researched, which is about 1.2 nm. Due to advantages, such as low cost, simple structure, easy switching and multiple laser states, the designed laser has great application potential in laser radar, optical fiber sensing and so on.


Photonics ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 447
Author(s):  
Alexey G. Kuznetsov ◽  
Ilya N. Nemov ◽  
Alexey A. Wolf ◽  
Ekaterina A. Evmenova ◽  
Sergey I. Kablukov ◽  
...  

We review our recent experimental results on the cascaded Raman conversion of highly multimode laser diode (LD) pump radiation into the first- and higher-order Stokes radiation in multimode graded-index fibers. A linear cavity composed of fiber Bragg gratings (FBGs) inscribed in the fiber core is formed to provide feedback for the first Stokes order, whereas, for the second order, both a linear cavity consisting of two FBGs and a half-open cavity with one FBG and random distributed feedback (RDFB) via Rayleigh backscattering along the fiber are explored. LDs with different wavelengths (915 and 940 nm) are used for pumping enabling Raman lasing at different wavelengths of the first (950, 954 and 976 nm), second (976, 996 and 1019 nm) and third (1065 nm) Stokes orders. Output power and efficiency, spectral line shapes and widths, beam quality and shapes are compared for different configurations. It is shown that the RDFB cavity provides higher slope efficiency of the second Stokes generation (up to 70% as that for the first Stokes wave) with output power up to ~30 W, limited by the third Stokes generation. The best beam quality parameter of the second Stokes beam is close to the diffraction limit (M2~1.3) in both linear and half-open cavities, whereas the line is narrower (<0.2 nm) and more stable in the case of the linear cavity with two FBGs. However, an optimization of the FBG reflection spectrum used in the half-open cavity allows this linewidth value to be approached. The measured beam profiles show the dip formation in the output pump beam profile, whereas the first and second Stokes beams are Gaussian-shaped and almost unchanged with increasing power. A qualitative explanation of such behavior in connection with the power evolution for the transmitted pump and generated first, second and third Stokes beams is given. The potential for wavelength tuning of the cascaded Raman lasers based on LD-pumped multimode fibers is discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. A. Perez-Herrera ◽  
M. Bravo ◽  
P. Roldan-Varona ◽  
D. Leandro ◽  
L. Rodriguez-Cobo ◽  
...  

AbstractIn this work, an experimental analysis of the performance of different types of quasi-randomly distributed reflectors inscribed into a single-mode fiber as a sensing mirror is presented. These artificially-controlled backscattering fiber reflectors are used in short linear cavity fiber lasers. In particular, laser emission and sensor application features are analyzed when employing optical tapered fibers, micro-drilled optical fibers and 50 μm-waist or 100 μm-waist micro-drilled tapered fibers (MDTF). Single-wavelength laser with an output power level of about 8.2 dBm and an optical signal-to-noise ratio of 45 dB were measured when employing a 50 μm-waist micro-drilled tapered optical fiber. The achieved temperature sensitivities were similar to those of FBGs; however, the strain sensitivity improved more than one order of magnitude in comparison with FBG sensors, attaining slope sensitivities as good as 18.1 pm/με when using a 50 μm-waist MDTF as distributed reflector.


2021 ◽  
Vol 2075 (1) ◽  
pp. 012012
Author(s):  
Nani Fadzlina Naim ◽  
Awangku Nur Azree Awang Azlan ◽  
Muhammad Faiz Ibrahim ◽  
Suzi Seroja Sarnin ◽  
Norsuzila Ya’acob ◽  
...  

Abstract This paper presents the design of multiwavelength Erbium Doped Fiber (EDF)-Raman fiber laser utilizing Mach-Zehnder Interferometer (MZI) with various cavity structures. A multiwavelength laser employing hybrid gain medium of EDF-Raman amplifier is simulated using OptiSystem software. Three cavity structures of multiwavelength laser such as unidirectional, bidirectional and ring cavity are simulated and analysed. From the simulation result, it is found that ring cavity structure produced the best performance whereas at 1000 mW pump power, up to 19 lasing lines were obtained in the ring cavity, compared to 18, and 16 lasing lines in the unidirectional and bidirectional linear cavity, respectively. All multiwavelength fiber lasers exhibit the same line spacing of 4.9 nm. In addition, at coupling coefficient of 0.9, up to 49.5 dB of side mode suppression ratio (SMSR) were achieved in the ring cavity structure, compared to 49.2 dB, and 30.3 dB of SMSR in the unidirectional and bidirectional linear cavity, respectively. However, bidirectional linear cavity exhibits the highest peak power of 2.07 dBm, compared to -17.4 dBm, and -15.5 dBm of peak power in the unidirectional linear and ring cavity, respectively.


Author(s):  
Kengo Hatanaka ◽  
Hiroki Kishikawa ◽  
Nobuo Goto ◽  
Junichi Fujikata ◽  
Yi-Lin Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document