ocean ridges
Recently Published Documents


TOTAL DOCUMENTS

621
(FIVE YEARS 106)

H-INDEX

77
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Anne M. Hofmeister ◽  
Robert E. Criss ◽  
Everett M. Criss

ABSTRACT Lateral accelerations require lateral forces. We propose that force imbalances in the unique Earth-Moon-Sun system cause large-scale, cooperative tectonic motions. The solar gravitational pull on the Moon, being 2.2× terrestrial pull, causes lunar drift, orbital elongation, and an ~1000 km radial monthly excursion of the Earth-Moon barycenter inside Earth’s mantle. Earth’s spin superimposes an approximately longitudinal 24 h circuit of the barycenter. Because the oscillating barycenter lies 3500–5500 km from the geocenter, Earth’s tangential orbital acceleration and solar pull are imbalanced. Near-surface motions are enabled by a weak low-velocity zone underlying the cold, brittle lithosphere: The thermal states of both layers result from leakage of Earth’s internal radiogenic heat to space. Concomitantly, stress induced by spin cracks the lithosphere in a classic X-pattern, creating mid-ocean ridges and plate segments. The inertial response of our high-spin planet with its low-velocity zone is ~10 cm yr–1 westward drift of the entire lithosphere, which largely dictates plate motions. The thermal profile causes sinking plates to thin and disappear by depths of ~200–660 km, depending on angle and speed. Cyclical stresses are effective agents of failure, thereby adding asymmetry to plate motions. A comparison of rocky planets shows that the presence and longevity of volcanism and tectonism depend on the particular combination of moon size, moon orbital orientation, proximity to the Sun, and rates of body spin and cooling. Earth is the only rocky planet with all the factors needed for plate tectonics.


Science ◽  
2022 ◽  
Vol 375 (6576) ◽  
pp. 57-61
Author(s):  
Xiyuan Bao ◽  
Carolina R. Lithgow-Bertelloni ◽  
Matthew G. Jackson ◽  
Barbara Romanowicz
Keyword(s):  

2021 ◽  
Vol 49 (4) ◽  
pp. 136-161
Author(s):  
E. V. Ivanova ◽  
O. V. Levchenko ◽  
E. A. Ovsepyan ◽  
D. G. Borisov ◽  
T. F. Zinger

On August 6, 2021, the chief researcher of the IO RAS, Doctor of Geological and Mineralogical Sciences, Professor Ivar Oskarovich Murdmaa turned 90 years old. The main focus of I.O. Murdmaa is the study of bottom sediments of seas and oceans, their lithology, mineralogy, deposition processes, facies and formations, the theory of oceanic sedimentogenesis. He first distinguished marine volcanoterrigenous sediments and described the facies variability of modern sediments of island arcs. Ivar Murdmaa is known for his studies in mineralogy of oceanic sediments, processes of pelagic sedimentogenesis and associated iron-manganese nodules formation. Studying sediment formation in rift zones of mid-ocean ridges, he identified a new genetic type of sediments named edaphogeonus sediments, elaborated mineralogical criteria for their recognition and formation processes. In recent years I.O. Murdmaa is actively developing the theoretical concept of "sedimentosphere", paying special attention to a new direction – the study of the erosion-accumulative activity of bottom currents and the formation of contourites.


Geosciences ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 16
Author(s):  
Gabriel Pasquet ◽  
Rokiya Houssein Hassan ◽  
Olivier Sissmann ◽  
Jacques Varet ◽  
Isabelle Moretti

Dihydrogen (H2) is generated by fluid–rock interactions along mid-ocean ridges (MORs) and was not, until recently, considered as a resource. However, in the context of worldwide efforts to decarbonize the energy mix, clean hydrogen is now highly sought after, and the production of natural H2 is considered to be a powerful alternative to electrolysis. The Afar Rift System has many geological features in common with MORs and offers potential in terms of natural H2 resources. Here, we present data acquired during initial exploration in this region. H2 contents in soil and within fumaroles were measured along a 200 km section across the Asal–Ghoubbet rift and the various intervening grabens, extending from Obock to Lake Abhe. These newly acquired data have been synthesized with existing data, including those from the geothermal prospect area of the Asal–Ghoubbet rift zone. Our results demonstrate that basalt alteration with oxidation of iron-rich facies and simultaneous reduction in water is the likely the source of the hydrogen, although H2S reduction cannot be ruled out. However, H2 volumes at the surface within fumaroles were found to be low, reaching only a few percent. These values are considerably lower than those found in MORs. This discrepancy may be attributed to bias introduced by surface sampling; for example, microorganisms may be preferentially consuming H2 near the surface in this environment. However, the low H2 generation rates found in the study area could also be due to a lack of reactants, such as fayalite (i.e., owing to the presence of low-olivine basalts with predominantly magnesian olivines), or to the limited volume and slow circulation of water. In future, access to additional subsurface data acquired through the ongoing geothermal drilling campaign will bring new insight to help answer these questions.


Author(s):  
A. Morozov ◽  
G. Avetisov ◽  
G. Antonovskaya ◽  
V. Asming ◽  
S. Baranov ◽  
...  

The article provides an overview and analysis of seismicity within the boundaries of the Arctic region for 2015, a description of seismic station networks, and processing methods. The catalog of earthquakes in the Arctic region was compiled on the basis of catalogs of several organizations and seismological centers. In total, 334 earthquakes are included in the earthquake catalog. Most of the earthquakes that occurred in 2015, including all the strongest earthquakes, were located within the mid-ocean ridges of Mon, Knipovich and Gakkel. In the offshore territories, most of the earthquakes were confined to the Svalbard archipelago, in particular, to the seismically active zone in the Sturfjord strait. The renewal of instrumental seismological observations in 2011 (station ZFI) on Alexandra Land Island in the Franz Josef Land archipelago made it possible to record weak earthquakes in the north of the shelf of the Barents and Kara Seas. For twelve earthquakes, the focal mechanism parameters are presented according to the Global CMT catalog.


Abstract The near-bottom mixing that allows abyssal waters to upwell tilts isopycnals and spins up flow over the flanks of mid-ocean ridges. Meso- and large-scale currents along sloping topography are subjected to a delicate balance of Ekman arrest and spin down. These two seemingly disparate oceanographic phenomena share a common theory, which is based on a one-dimensional model of rotating, stratified flow over a sloping, insulated boundary. This commonly used model, however, lacks rapid adjustment of interior flows, limiting its ability to capture the full physics of spin up and spin down of along-slope flow. Motivated by two-dimensional dynamics, the present work extends the one-dimensional model by constraining the vertically integrated cross-slope transport and allowing for a barotropic cross-slope pressure gradient. This produces a closed secondary circulation by forcing Ekman transport in the bottom boundary layer to return in the interior. The extended model can thus capture Ekman spin up and spin down physics: the interior return flow is turned by the Coriolis acceleration, leading to rapid rather than slow diffusive adjustment of the along-slope flow. This transport-constrained one-dimensional model accurately describes twodimensional mixing-generated spin up over an idealized ridge and provides a unified framework for understanding the relative importance of Ekman arrest and spin down of flow along a slope.


2021 ◽  
Author(s):  
Jie Chen ◽  
Wayne Crawford ◽  
Mathilde Cannat

Abstract Successive flip-flop detachment faults in a nearly-amagmatic region of the ultraslow-spreading Southwest Indian Ridge (SWIR) at 64°30'E accommodate ~100% of plate divergence, with mostly ultramafic seafloor. As magma is the main heat carrier to the oceanic lithosphere, the nearly-amagmatic SWIR 64°30'E is expected to have a very thick lithosphere. Here, our microseismicity data shows a 15-km thick seismogenic lithosphere, actually thinner than the more magmatic SWIR Dragon Flag detachment with the same spreading rate. This challenges current models of how spreading rate and melt supply control the thermal regime of mid-ocean ridges. Microearthquakes with normal focal mechanisms are colocated with seismically imaged damage zones of the detachment and reveal hanging-wall normal faulting, which is not seen at more magmatic detachments at the SWIR or the Mid-Atlantic Ridge. We also document a two-day seismic swarm, interpret as caused by an upward-migrating melt intrusion in the detachment footwall (6-11 km), triggering a sequence of shallower (~1.5 km) tectonic earthquakes in the detachment fault plane. This points to a possible link between sparse magmatism and tectonic failure at melt-poor ultraslow ridges.


Geology ◽  
2021 ◽  
Author(s):  
Rémi Coltat ◽  
Philippe Boulvais ◽  
Yannick Branquet ◽  
Antonin Richard ◽  
Alexandre Tarantola ◽  
...  

Carbonation of mantle rocks during mantle exhumation is reported in present-day oceanic settings, both at mid-ocean ridges and ocean-continent transitions (OCTs). However, the hydrothermal conditions of carbonation (i.e., fluid sources, thermal regimes) during mantle exhumation remain poorly constrained. We focus on an exceptionally well-preserved fossil OCT where mantle rocks have been exhumed and carbonated along a detachment fault from underneath the continent to the seafloor along a tectonic Moho. Stable isotope (oxygen and carbon) analyses on calcite indicate that carbonation resulted from the mixing between serpentinization-derived fluids at ~175 °C and seawater. Strontium isotope compositions suggest interactions between seawater and the continental crust prior to carbonation. This shows that carbonation along the tectonic Moho occurs below the continental crust and prior to mantle exhumation at the seafloor during continental breakup.


2021 ◽  
Author(s):  
◽  
Thomas O. H. Orr

<p>Basement rocks in the southern Tararua Range are part of the Torlesse Supergroup, possibly Late Triassic to Late Jurassic in age, and form two distinct associations. The sedimentarv association consists mainly of quartzo-feldspathic sandstone and argillite with minor olistostrome, calcareous siltstone and microsparite. The sandstone and argillite were deposited as turbidites in a mid- to outer- submarine fan environment. The sediment was derived from a heavily dissected active continental margin that was shedding sediment of mainly plutonic and metamorphic origin. The volcanic association consists mainly of metabasite and coloured argillite with minor chert and limestone. Geochemical data indicate that the metabasites were erupted in an oceanic intraplate environment. The nature of amygdules in amygdaloidal metabasites suggests eruption in less than 800m of water. Coloured argillites have two distinct origins, namely sediments formed by the degredation of basalt; and also pelagic material modified by metal-rich effluent either from hydrothermal systems associated with mid-ocean ridges or intraplate volcanism. The rocks of the volcanic association indicate formation in an environment similar to present day mid-ocean islands. Nowhere were rocks of the two associations observed to be conformable. Coupled with this, the nature of the two associations suggests that they were formed in separate environments. The following structural history is proposed: 1) Early veining; 2) Isoclinal folding and development of a NNE striking cleavage; 3) Faulting both at low and high angles to bedding, extreme amounts of which have resulted in mélange; 4) NE-SW trending close to open folds; 5) E-W trending open to gentle folds; 6) Recent faulting, predominantly NE trending strike-slip faults. The nature of the two associations and the deformational style and history supports an accretionary prism model for the development of the Torlesse Supergroup. Rocks of the southern Tararua Range show many similarities with, and probably represent a northward continuation of, the Esk Head Mélange of the South Island.</p>


Sign in / Sign up

Export Citation Format

Share Document