scholarly journals A relict oasis of living deep-sea mussels Bathymodiolus and microbial-mediated seep carbonates at newly-discovered active cold seeps in the Gulf of Cádiz, NE Atlantic Ocean

PalZ ◽  
2021 ◽  
Author(s):  
Luis Somoza ◽  
José Luis Rueda ◽  
Francisco J. González ◽  
Blanca Rincón-Tomás ◽  
Teresa Medialdea ◽  
...  

AbstractExtensive beds of the deep-sea mussel Bathymodiolus mauritanicus (currently also known as Gigantidas mauritanicus) linked to active cold seeps related to fissure-like activity on Al Gacel mud volcano, Gulf of Cádiz, were filmed and sampled for the first time during the oceanographic expedition SUBVENT-2 aboard R/V Sarmiento de Gamboa. Al Gacel mud volcano is one of up to 80 fluid venting submarine structures (mud volcanoes and mud volcano/diapir complexes) identified in the Gulf of Cádiz as result of explosive venting of hydrocarbon-enriched fluids sourced from deep seated reservoirs. This mud volcano is a cone-shaped edifice, 107 m high, 944 m in diameter constituted by mud breccias and, partially covered by pavements of seep carbonates. Extensive beds of this deep-sea mussel were detected at the northern flank at 810–815 m water depth associated with bacterial mats around intermittent buoyant vertical bubble methane plumes. High methane concentrations were measured in the water column above living mussel beds. Other chemosymbiotic species (Siboglinum sp., Solemya elarraichensis, Isorropodon sp., Thyasira vulcolutre and Lucinoma asapheus) were also found in different parts of Al Gacel mud volcano. Al Gacel mud volcano may currently represent one of the most active mud volcanoes in the Gulf of Cádiz, delivering significant amounts of thermogenic hydrocarbon fluids which contribute to foster the extensive chemosynthesis-based communities detected. This finding is of paramount importance for linking extremophile bivalve populations along the North Atlantic, including cold seeps of the Gulf of México, hydrothermal vents of the Mid-Atlantic Ridge and now, detailed documented at the Gulf of Cádiz.

Oceans ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 351-385
Author(s):  
Luis Somoza ◽  
José L. Rueda ◽  
Olga Sánchez-Guillamón ◽  
Teresa Medialdea ◽  
Blanca Rincón-Tomás ◽  
...  

In this work, we integrate five case studies harboring vulnerable deep-sea benthic habitats in different geological settings from mid latitude NE Atlantic Ocean (24–42° N). Data and images of specific deep-sea habitats were acquired with Remoted Operated Vehicle (ROV) sensors (temperature, salinity, potential density, O2, CO2, and CH4). Besides documenting some key vulnerable deep-sea habitats, this study shows that the distribution of some deep-sea coral aggregations (including scleractinians, gorgonians, and antipatharians), deep-sea sponge aggregations and other deep-sea habitats are influenced by water masses’ properties. Our data support that the distribution of scleractinian reefs and aggregations of other deep-sea corals, from subtropical to north Atlantic could be dependent of the latitudinal extents of the Antarctic Intermediate Waters (AAIW) and the Mediterranean Outflow Waters (MOW). Otherwise, the distribution of some vulnerable deep-sea habitats is influenced, at the local scale, by active hydrocarbon seeps (Gulf of Cádiz) and hydrothermal vents (El Hierro, Canary Island). The co-occurrence of deep-sea corals and chemosynthesis-based communities has been identified in methane seeps of the Gulf of Cádiz. Extensive beds of living deep-sea mussels (Bathymodiolus mauritanicus) and other chemosymbiotic bivalves occur closely to deep-sea coral aggregations (e.g., gorgonians, black corals) that colonize methane-derived authigenic carbonates.


Zootaxa ◽  
2011 ◽  
Vol 2769 (1) ◽  
pp. 1 ◽  
Author(s):  
MAGDALENA BŁAŻEWICZ-PASZKOWYCZ ◽  
ROGER N BAMBER ◽  
MARINA R CUNHA

Faunal collections from mud-volcano sites in the Gulf of Cadiz, at depths between 355 and 3061 m, have revealed a high diversity (and in some cases high density) of tanaidaceans. The present study reports on nine new tanaidomorph species from eight different genera from this material. These include representatives of genera known elsewhere from non-ventassociated deep-sea habitats, but notably only the second and third (respectively) representatives of two genera, Coalecerotanais and Cristatotanais, known previously from cold-seep-habitats in the Gulf of Mexico. The genus Spinitanaopsis is synonymized with Cristatotanais. The tanaidacean records to date from hydrothermal vents or cold seeps are collated as a context for the present material. The possibilities of habitat-endemism in tanaidacean taxa associated with reducing environments and their biogeography are discussed.


Zootaxa ◽  
2018 ◽  
Vol 4377 (4) ◽  
pp. 517
Author(s):  
PATRICIA ESQUETE ◽  
MARINA R. CUNHA

The Tanaidacea collection from various research cruises carried out in the Gulf of Cadiz and Horseshoe Continental Rise between 2004 and 2012 yielded four species new to science that are described herein. Two belong to genera recorded for the first time since the original descriptions of their type species: Cetiopyge, described from the Gulf of Mexico and Gamboa from shallow waters of Macaronesia. The other two belong to the genera Collettea and Paragathotanais, both with a worldwide distribution. Additionally, specimens of Tumidochelia uncinata are described and illustrated to complete previous descriptions. Identification keys to all known genera of Nototanaidae, and the Eastern Atlantic species of Paragathotanais and Collettea are provided. This works raises the number of tanaidacean species known from the deep-sea habitats in the study region to a total of 22. 


2013 ◽  
Vol 10 (4) ◽  
pp. 2553-2568 ◽  
Author(s):  
M. R. Cunha ◽  
C. F. Rodrigues ◽  
L. Génio ◽  
A. Hilário ◽  
A. Ravara ◽  
...  

Abstract. The Gulf of Cadiz is an extensive seepage area in the south Iberian margin (NE Atlantic) encompassing over 40 mud volcanoes (MVs) at depths ranging from 200 to 4000 m. The area has a long geologic history and a central biogeographic location with a complex circulation ensuring oceanographic connectivity with the Mediterranean Sea, equatorial and North Atlantic regions. The geodynamics of the region promotes a notorious diversity in the seep regime despite the relatively low fluxes of hydrocarbon-rich gases. We analyse quantitative samples taken during the cruises TTR14, TTR15 and MSM01-03 in seven mud volcanoes grouped into Shallow MVs (Mercator: 350 m, Kidd: 500 m, Meknès: 700 m) and Deep MVs (Captain Arutyunov: 1300 m, Carlos Ribeiro: 2200 m, Bonjardim: 3000 m, Porto: 3900 m) and two additional Reference sites (ca. 550 m). Macrofauna (retained by a 500 μm sieve) was identified to species level whenever possible. The samples yielded modest abundances (70–1567 individuals per 0.25 m2), but the local and regional number of species is among the highest ever reported for cold seeps. Among the 366 recorded species, 22 were symbiont-hosting bivalves (Thyasiridae, Vesicomyidae, Solemyidae) and tubeworms (Siboglinidae). The multivariate analyses supported the significant differences between Shallow and Deep MVs: The environmental conditions at the Shallow MVs make them highly permeable to the penetration of background fauna leading to high diversity of the attendant assemblages (H′: 2.92–3.94; ES(100): 28.3–45.0; J′: 0.685–0.881). The Deep MV assemblages showed, in general, contrasting features but were more heterogeneous (H′: 1.41–3.06; ES(100): 10.5–30.5; J′: 0.340–0.852) and often dominated by one or more siboglinid species. The rarefaction curves confirmed the differences in biodiversity of Deep and Shallow MVs as well as the convergence of the latter to the Reference sites. The Bray–Curtis dissimilarity demonstrated the high β-diversity of the assemblages, especially in pairwise comparisons involving samples from the Deep MVs. Diversity partitioning assessed for species richness, Hurlbert's expected number of species and Shannon–Wiener index confirmed the high β-diversity across different spatial scales (within MVs, between MVs, between Deep and Shallow MVs). We suggest that historical and contemporary factors with differential synergies at different depths contribute to the high α-, β- and γ-diversity of the mud volcano faunal assemblages in the Gulf of Cadiz.


2013 ◽  
Vol 10 (7) ◽  
pp. 5159-5170 ◽  
Author(s):  
L. Génio ◽  
A. Warén ◽  
F. L. Matos ◽  
M. R. Cunha

Abstract. Bridging the Atlantic and Mediterranean continental margins, the South Iberian region has recently been the focus for geological and biological investigations. In this region, the Gulf of Cadiz (GoC) encompasses a great variety of deep-sea habitats that harbour highly diverse biological communities. In this study, we describe the composition of gastropod assemblages obtained from in situ colonization experiments and benthic sampling of deep-sea habitats in the GoC. Gastropod distributional patterns, such as bathymetric ranges, bathymetric turnover, affinity to substrate types and abundance-occupancy relationships, are analysed and interpreted in relation to their inferred dispersal capabilities and substrate availability. Overall, the GoC comprises a high diversity of gastropods (65 species), and distinct assemblages were found in typical sedimentary environments at mud volcanoes and in association with carbonate and coral samples or organic substrata. The number of taxa peaked at the Carbonate Province in the middle slope (600–1200 m depth), a highly heterogeneous area with numerous mud volcanoes, carbonate mounds and corals. Darwin (1100 m) and Captain Arutyunov (1300 m) mud volcanoes harboured the most species-rich and abundant gastropod assemblages, respectively. Colonization experiments with organic substrata (wood and alfalfa grass) also yielded diverse and abundant gastropod assemblages. These organic inputs allowed the recruitment of local species but mainly of wood specialist taxa that were not previously known from the GoC. Our results suggest that the distribution of gastropod assemblages may be primarily determined by the occurrence of suitable habitats, probably due to the effect of the substrate type on the structural complexity of the habitat and availability and diversity of adequate food sources. The type of larval development is apparently not a limiting factor for colonization of deep-sea habitats. However, the predominance of non-planktotrophy, and especially lecithotrophy, suggests that a trade-off between more limited dispersal capability and higher potential for self-recruitment may be a recurrent pattern in gastropod species inhabiting reducing environments and other patchily distributed deep-sea habitats. A network of suitable habitats that ensures effective population connectivity would explain the predominance and relatively wide distribution of short-distance dispersing non-planktotrophic species in the GoC deep-sea habitats and other geographical regions.


Zootaxa ◽  
2011 ◽  
Vol 2919 (1) ◽  
pp. 1 ◽  
Author(s):  
MAGDALENA BŁAŻEWICZ-PASZKOWYCZ ◽  
ROGER N. BAMBER ◽  
MARINA R. CUNHA

Faunal collections from mud-volcano sites in the Gulf of Cadiz, at depths between 355 and 3061 m, have revealed a high diversity (and in some cases high density) of tanaidaceans. A previous paper has described some of the tanaidomorph species found. Records of apseudomorph species from deep-sea chemosynthetic habitats are almost non-existent. The present study reports on seven apseudomorph species from five different genera from this material; two of the species, one in each of the genera Sphyrapus and Pseudosphyrapus are new to science, although there was insufficient material available to describe fully the Pseudosphyrapus species. Two of the other species are reported herein for only the second time. A neotype is erected for Apseudes setiferus Băcescu, and a lectotype for Sphyrapus malleolus Norman & Stebbing; these two, plus Atlantapseudes nigrifrons Băcescu and Fageapseudes retusifrons Richardson are redescribed. The habitus of Apseudes grossimanus is figured. None of the taxa appear to show any morphological features specifically adapted to the peculiar habitat around mud-volcanoes. The genus Collossella is relegated to the synonymy of Fageapseudes. The nonchemosynthetic-habitat-associated species Apseudes coriolis is moved to Taraxapseudes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Valentina Amaral ◽  
Cristina Romera-Castillo ◽  
Jesús Forja

AbstractSeafloor structures related to the emission of different fluids, such as submarine mud volcanoes (MVs), have been recently reported to largely contribute with dissolved organic matter (DOM) into the oceans. Submarine MVs are common structures in the Gulf of Cádiz. However, little is known about the biogeochemical processes that occur in these peculiar environments, especially those involving DOM. Here, we report DOM characterization in the sediment pore water of three MVs of the Gulf of Cádiz. Estimated benthic fluxes of dissolved organic carbon (DOC) and chromophoric DOM (CDOM) were higher than in other marine sediments with an average of 0.11 ± 0.04 mmol m−2 d−1 for DOC and ranging between 0.11 and 2.86 m−1 L m−2 d−1, for CDOM. Protein-like components represented ~ 70% of the total fluorescent DOM (FDOM). We found that deep fluids migration from MVs (cold seeps) and anaerobic production via sulfate-reducing bacteria represent a source of DOC and FDOM to the overlying water column. Our results also indicate that fluorescent components can have many diverse sources not captured by common classifications. Overall, MVs act as a source of DOC, CDOM, and FDOM to the deep waters of the Gulf of Cádiz, providing energy to the microbial communities living there.


2012 ◽  
Vol 9 (11) ◽  
pp. 16815-16875 ◽  
Author(s):  
S. Duperron ◽  
S. M. Gaudron ◽  
C. F. Rodrigues ◽  
M. R. Cunha ◽  
C. Decker ◽  
...  

Abstract. Deep-sea bivalves found at hydrothermal vents, cold seeps and organic falls are sustained by chemosynthetic bacteria which ensure part or all of their carbon nutrition. These symbioses are of prime importance for the functioning of the ecosystems. Similar symbioses occur in other bivalve species living in shallow and coastal reduced habitats worldwide. In recent years, several deep-sea species have been investigated from continental margins around Europe, West Africa, East America, the Gulf of Mexico, and from hydrothermal vents on the Mid-Atlantic Ridge. In parallel, numerous more easily accessible shallow marine species were studied. We here provide a summary of the current knowledge available on chemosymbiotic bivalves in the area ranging west-to-east from the Gulf of Mexico to Marmara Sea, and north-to-south from the Arctic to the Gulf of Guinea. Characteristics of symbioses in 51 species from the area are summarized for each of the five bivalve families documented to harbor chemosynthetic symbionts (Mytilidae, Vesicomyidae, Solemyidae, Thyasiridae and Lucinidae), and compared among families with special emphasis on ecology, life cycle, and connectivity. Chemosynthetic symbioses are a major adaptation to ecosystems and habitats exposed to reducing conditions, yet relatively little is known regarding their diversity and functioning apart from a few "model species" on which effort has focused over the last 30 yr. In the context of increasing concern about biodiversity and ecosystems, and increasing anthropogenic pressure on Oceans, we advocate for a better assessment of bivalve symbioses diversity in order to evaluate the capacities of these remarkable ecological and evolutionary units to withstand environmental change


Sign in / Sign up

Export Citation Format

Share Document