scholarly journals Microseismicity and lithosphere thickness at a nearly amagmatic mid-ocean ridge

Author(s):  
Jie Chen ◽  
Wayne Crawford ◽  
Mathilde Cannat

Abstract Successive flip-flop detachment faults in a nearly-amagmatic region of the ultraslow-spreading Southwest Indian Ridge (SWIR) at 64°30'E accommodate ~100% of plate divergence, with mostly ultramafic seafloor. As magma is the main heat carrier to the oceanic lithosphere, the nearly-amagmatic SWIR 64°30'E is expected to have a very thick lithosphere. Here, our microseismicity data shows a 15-km thick seismogenic lithosphere, actually thinner than the more magmatic SWIR Dragon Flag detachment with the same spreading rate. This challenges current models of how spreading rate and melt supply control the thermal regime of mid-ocean ridges. Microearthquakes with normal focal mechanisms are colocated with seismically imaged damage zones of the detachment and reveal hanging-wall normal faulting, which is not seen at more magmatic detachments at the SWIR or the Mid-Atlantic Ridge. We also document a two-day seismic swarm, interpret as caused by an upward-migrating melt intrusion in the detachment footwall (6-11 km), triggering a sequence of shallower (~1.5 km) tectonic earthquakes in the detachment fault plane. This points to a possible link between sparse magmatism and tectonic failure at melt-poor ultraslow ridges.

Geology ◽  
2019 ◽  
Vol 47 (11) ◽  
pp. 1069-1073 ◽  
Author(s):  
Ingo Grevemeyer ◽  
Nicholas W. Hayman ◽  
Dietrich Lange ◽  
Christine Peirce ◽  
Cord Papenberg ◽  
...  

Abstract The depth of earthquakes along mid-ocean ridges is restricted by the relatively thin brittle lithosphere that overlies a hot, upwelling mantle. With decreasing spreading rate, earthquakes may occur deeper in the lithosphere, accommodating strain within a thicker brittle layer. New data from the ultraslow-spreading Mid-Cayman Spreading Center (MCSC) in the Caribbean Sea illustrate that earthquakes occur to 10 km depth below seafloor and, hence, occur deeper than along most other slow-spreading ridges. The MCSC spreads at 15 mm/yr full rate, while a similarly well-studied obliquely opening portion of the Southwest Indian Ridge (SWIR) spreads at an even slower rate of ∼8 mm/yr if the obliquity of spreading is considered. The SWIR has previously been proposed to have earthquakes occurring as deep as 32 km, but no shallower than 5 km. These characteristics have been attributed to the combined effect of stable deformation of serpentinized mantle and an extremely deep thermal boundary layer. In the context of our MCSC results, we reanalyze the SWIR data and find a maximum depth of seismicity of 17 km, consistent with compilations of spreading-rate dependence derived from slow- and ultraslow-spreading ridges. Together, the new MCSC data and SWIR reanalysis presented here support the hypothesis that depth-seismicity relationships at mid-ocean ridges are a function of their thermal-mechanical structure as reflected in their spreading rate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicolás Pinzón ◽  
Carlos A. Vargas

AbstractVariations in Mid Ocean Ridge seismicity with age provide a new tool to understand the thermal evolution of the oceanic lithosphere. The sum of seismic energy released by earthquakes during a time, and for an area, is proportional to its lithospheric age. Asthenospheric temperatures emerge on ridge centers with new crust resulting in high seismic activity; thus, the energy released sum is highest on the young lithosphere and decreases with age. We propose a general model that relates the systematic variation of seismic energy released with the lithospheric age. Our analysis evaluates the main physical factors involved in the changes of energy released sum with the oceanic lithosphere age in MOR systems of different spreading rates. These observations are substantiated based on three cross-sections of the East Pacific Rise, six sections in the Mid Atlantic Ridge, and three profiles in the Central Indian Ridge. Our global model provides an additional tool for understanding tectonic processes, including the effects of seismicity and mid-plate volcanism, and a better understanding of the thermal evolution for the young oceanic lithosphere.


2020 ◽  
Author(s):  
Andrew Merdith ◽  
Muriel Andreani ◽  
Isabelle Daniel ◽  
Thomas Gernon

<p>The marked increase in seawater Mg/Ca during the Cenozoic is poorly understood, due to the limited availability of proxy data and uncertainty in elucidating the respective contributions of Mg sources and sinks through geological time<sup>1</sup>. Though established as a potentially large source of dissolved Mg over twenty years ago, the weathering of abyssal peridotites<sup>2</sup> is a largely unexplored potential source of Mg to oceanic budgets. The release of magnesium from peridotite weathering can occur in high temperature environments, during serpentinisation near the ridge axis<sup>3</sup>, as well as low temperature off-axis environments where peridotite and serpentinite are altered to clays, carbonates and silicates<sup>4</sup>. The relative magnitude of Mg fluxes from these sources are poorly constrained. Recent studies, however, now provide a general method for estimating bulk crustal lithologies of mid-ocean ridges based on spreading rate (i.e. proportion and mass of basalts, gabbros, peridotites and serpentinised peridotite) through time<sup>5</sup>—enabling us to quantitatively assess potential Mg contributions from these different environments.</p><p>We constructed a model for oceanic crustal weathering (proportional to depth below the seafloor) to develop estimates of the mass and isotopic composition of magnesium loss from peridotite during alteration in both high- and low-T environments. As Mg fractionation occurs predominantly in low-T reactions, the primary serpentinisation reaction in near-ridge environments is unlikely to result in isotopic differentiation. Comparably, the secondary low-T alterations, of both remaining peridotites (to clays and iron hydroxides) and serpentinite (e.g. to talc and dolomite) are likely to result in the fractionation of Mg. We extend our analysis to incorporate the fractionation of these systems<sup>4</sup> and their release of Mg into the ocean. We completed our analysis by presenting a compilation of fluid data for magnesium concentrations in ultramafic bodies from hydrothermal systems, in order to evaluate our model.</p><p><strong>References</strong></p><p>(1) Staudigel, H. "Chemical fluxes from hydrothermal alteration of the oceanic crust." (2014): 583-606.</p><p>(2) Snow, J.E. and Dick, H.J., 1995. Pervasive magnesium loss by marine weathering of peridotite. Geochimica et Cosmochimica Acta, 59(20), pp.4219-4235.</p><p>(3) Seyfried Jr, W.E., Pester, N.J., Ding, K. and Rough, M., 2011. Vent fluid chemistry of the Rainbow hydrothermal system (36 N, MAR): Phase equilibria and in situ pH controls on subseafloor alteration processes. Geochimica et Cosmochimica Acta, 75(6), pp.1574-1593.</p><p>(4) Liu, P.P., Teng, F.Z., Dick, H.J., Zhou, M.F. and Chung, S.L., 2017. Magnesium isotopic composition of the oceanic mantle and oceanic Mg cycling. Geochimica et Cosmochimica Acta, 206, pp.151-165.</p><p>(5) Merdith, A.S., Atkins, S.E. and Tetley, M.G., 2019. Tectonic controls on carbon and serpentinite storage in subducted upper oceanic lithosphere for the past 320 Ma. Frontiers in Earth Science, 7, p.332.</p>


2020 ◽  
pp. jgs2020-208
Author(s):  
Tong Liu ◽  
Chuan-Zhou Liu ◽  
Fu-Yuan Wu ◽  
Henry J.B. Dick ◽  
Wen-Bin Ji ◽  
...  

The crust and mantle in both ophiolites (fossil ocean lithosphere) and in modern oceans are enormously diverse. Along-axis morphology and lower crustal accretion at ultraslow-spreading ocean ridges are fundamentally different from those at faster-spreading ridges, and are key to understanding how crustal accretion varies with spreading rate and magma supply. Ultraslow-spreading ridges provide analogs for ophiolites, to identify those that may have formed under similar conditions. Parallel studies of modern ocean lithosphere and ophiolites therefore can uniquely inform the origin and genesis of both. Here we report the results of structural and petrological studies on the Xigaze ophiolite in the Tibetan Plateau, and compare it to the morphology and deep drilling results at the ultraslow-spreading Southwest Indian Ridge. The Xigaze ophiolite has a complete but laterally discontinuous crust, with discrete diabase dikes/sills cutting both mantle and lower crust. The gabbro units are thin (∼350 m) and show upward cyclic chemical variations, supporting for an episodic and intermittent magma supply. These features are comparable to the highly focused magmatism and low magma budget at modern ultraslow-spreading ridges. Thus we suggest that the Xigaze ophiolite represents an on-land analog of ultraslow-spreading ocean lithosphere.


Sign in / Sign up

Export Citation Format

Share Document