urban computing
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 50)

H-INDEX

15
(FIVE YEARS 5)

2023 ◽  
Vol 55 (1) ◽  
pp. 1-46
Author(s):  
Rodolfo Meneguette ◽  
Robson De Grande ◽  
Jo Ueyama ◽  
Geraldo P. Rocha Filho ◽  
Edmundo Madeira

Vehicular Edge Computing (VEC), based on the Edge Computing motivation and fundamentals, is a promising technology supporting Intelligent Transport Systems services, smart city applications, and urban computing. VEC can provide and manage computational resources closer to vehicles and end-users, providing access to services at lower latency and meeting the minimum execution requirements for each service type. This survey describes VEC’s concepts and technologies; we also present an overview of existing VEC architectures, discussing them and exemplifying them through layered designs. Besides, we describe the underlying vehicular communication in supporting resource allocation mechanisms. With the intent to overview the risks, breaches, and measures in VEC, we review related security approaches and methods. Finally, we conclude this survey work with an overview and study of VEC’s main challenges. Unlike other surveys in which they are focused on content caching and data offloading, this work proposes a taxonomy based on the architectures in which VEC serves as the central element. VEC supports such architectures in capturing and disseminating data and resources to offer services aimed at a smart city through their aggregation and the allocation in a secure manner.


2021 ◽  
Author(s):  
Diya Li ◽  
Zhe Zhang
Keyword(s):  

2021 ◽  
Vol 12 (4) ◽  
pp. 1-23
Author(s):  
Anbu Huang ◽  
Yang Liu ◽  
Tianjian Chen ◽  
Yongkai Zhou ◽  
Quan Sun ◽  
...  

From facial recognition to autonomous driving, Artificial Intelligence (AI) will transform the way we live and work over the next couple of decades. Existing AI approaches for urban computing suffer from various challenges, including dealing with synchronization and processing of vast amount of data generated from the edge devices, as well as the privacy and security of individual users, including their bio-metrics, locations, and itineraries. Traditional centralized-based approaches require data in each organization be uploaded to the central database, which may be prohibited by data protection acts, such as GDPR and CCPA. To decouple model training from the need to store the data in the cloud, a new training paradigm called Federated Learning (FL) is proposed. FL enables multiple devices to collaboratively learn a shared model while keeping the training data on devices locally, which can significantly mitigate privacy leakage risk. However, under urban computing scenarios, data are often communication-heavy, high-frequent, and asynchronized, posing new challenges to FL implementation. To handle these challenges, we propose a new hybrid federated learning architecture called StarFL. By combining with Trusted Execution Environment (TEE), Secure Multi-Party Computation (MPC), and (Beidou) satellites, StarFL enables safe key distribution, encryption, and decryption, and provides a verification mechanism for each participant to ensure the security of the local data. In addition, StarFL can provide accurate timestamp matching to facilitate synchronization of multiple clients. All these improvements make StarFL more applicable to the security-sensitive scenarios for the next generation of urban computing.


2021 ◽  
Vol 10 (3) ◽  
pp. 1-18
Author(s):  
Scott McQuire

This article takes stock of the smart city concept by locating it in relation to both a longer history of urban computing, as well as more recent projects exploring the vexed issues of participatory urbanism, data ethics and urban surveillance. The author argues for the need to decouple thinking regarding the potential of urban digital infrastructure from the narrow and often technocentric discourse of ‘smart cityism'. Such a decoupling will require continued experimentation with both practical models and conceptual frameworks, but will offer the best opportunity for the ongoing digitization of cities to deliver on claims of ‘empowering' urban inhabitants.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Simon Elias Bibri

AbstractSustainable cities are quintessential complex systems—dynamically changing environments and developed through a multitude of individual and collective decisions from the bottom up to the top down. As such, they are full of contestations, conflicts, and contingencies that are not easily captured, steered, and predicted respectively. In short, they are characterized by wicked problems. Therefore, they are increasingly embracing and leveraging what smart cities have to offer as to big data technologies and their novel applications in a bid to effectively tackle the complexities they inherently embody and to monitor, evaluate, and improve their performance with respect to sustainability—under what has been termed “data-driven smart sustainable cities.” This paper analyzes and discusses the enabling role and innovative potential of urban computing and intelligence in the strategic, short-term, and joined-up planning of data-driven smart sustainable cities of the future. Further, it devises an innovative framework for urban intelligence and planning functions as an advanced form of decision support. This study expands on prior work done to develop a novel model for data-driven smart sustainable cities of the future. I argue that the fast-flowing torrent of urban data, coupled with its analytical power, is of crucial importance to the effective planning and efficient design of this integrated model of urbanism. This is enabled by the kind of data-driven and model-driven decision support systems associated with urban computing and intelligence. The novelty of the proposed framework lies in its essential technological and scientific components and the way in which these are coordinated and integrated given their clear synergies to enable urban intelligence and planning functions. These utilize, integrate, and harness complexity science, urban complexity theories, sustainability science, urban sustainability theories, urban science, data science, and data-intensive science in order to fashion powerful new forms of simulation models and optimization methods. These in turn generate optimal designs and solutions that improve sustainability, efficiency, resilience, equity, and life quality. This study contributes to understanding and highlighting the value of big data in regard to the planning and design of sustainable cities of the future.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 130690-130697
Author(s):  
Rongbo Zhu ◽  
Lu Liu ◽  
Maode Ma ◽  
Hongxiang Li ◽  
Shiwen Mao

Author(s):  
Senzhang Wang ◽  
Jiannong Cao

AbstractIn the big data era, with the large volume of available data collected by various sensors deployed in urban areas and the recent advances in AI techniques, urban computing has become increasingly important to facilitate the improvement of people’s lives, city operation systems, and the environment. In this chapter, we introduce the challenges, methodologies, and applications of AI techniques for urban computing. We first introduce the background, followed by listing key challenges from the perspective of computer science when AI techniques are applied. Then we briefly introduce the AI techniques that are widely used in urban computing, including supervised learning, semi-supervised learning, unsupervised learning, matrix factorization, graphic models, deep learning, and reinforcement learning. With the recent advances of deep-learning techniques, models such as CNN and RNN have shown significant performance gains in many applications. Thus, we briefly introduce the deep-learning models that are widely used in various urban-computing tasks. Finally, we discuss the applications of urban computing including urban planning, urban transportation, location-based social networks (LBSNs), urban safety and security, and urban-environment monitoring. For each application, we summarize major research challenges and review previous work that uses AI techniques to address them.


Sign in / Sign up

Export Citation Format

Share Document