compaction bands
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 18)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 83 (5) ◽  
Author(s):  
Michael J. Heap ◽  
Marie E.S. Violay

AbstractThe microstructure and mineralogy of volcanic rocks is varied and complex, and their mechanical behaviour is similarly varied and complex. This review summarises recent developments in our understanding of the mechanical behaviour and failure modes of volcanic rocks. Compiled data show that, although porosity exerts a first-order influence on the uniaxial compressive strength of volcanic rocks, parameters such as the partitioning of the void space (pores and microcracks), pore and crystal size and shape, and alteration also play a role. The presence of water, strain rate, and temperature can also influence uniaxial compressive strength. We also discuss the merits of micromechanical models in understanding the mechanical behaviour of volcanic rocks (which includes a review of the available fracture toughness data). Compiled data show that the effective pressure required for the onset of hydrostatic inelastic compaction in volcanic rocks decreases as a function of increasing porosity, and represents the pressure required for cataclastic pore collapse. Differences between brittle and ductile mechanical behaviour (stress-strain curves and the evolution of porosity and acoustic emission activity) from triaxial deformation experiments are outlined. Brittle behaviour is typically characterised by shear fracture formation, and an increase in porosity and permeability. Ductile deformation can either be distributed (cataclastic pore collapse) or localised (compaction bands) and is characterised by a decrease in porosity and permeability. The available data show that tuffs deform by delocalised cataclasis and extrusive volcanic rocks develop compaction bands (planes of collapsed pores connected by microcracks). Brittle failure envelopes and compactive yield caps for volcanic rocks are compared, highlighting that porosity exerts a first-order control on the stresses required for the brittle-ductile transition and shear-enhanced compaction. However, these data cannot be explained by porosity alone and other microstructural parameters, such as pore size, must also play a role. Compactive yield caps for tuffs are elliptical, similar to data for sedimentary rocks, but are linear for extrusive volcanic rocks. Linear yield caps are considered to be a result of a high pre-existing microcrack density and/or a heterogeneous distribution of porosity. However, it is still unclear, with the available data, why compaction bands develop in some volcanic rocks but not others, which microstructural attributes influence the stresses required for the brittle-ductile transition and shear-enhanced compaction, and why the compactive yield caps of extrusive volcanic rocks are linear. We also review the Young’s modulus, tensile strength, and frictional properties of volcanic rocks. Finally, we review how laboratory data have and can be used to improve our understanding of volcanic systems and highlight directions for future research. A deep understanding of the mechanical behaviour and failure modes of volcanic rock can help refine and develop tools to routinely monitor the hazards posed by active volcanoes.


Author(s):  
Julia Leuthold ◽  
Eleni Gerolymatou ◽  
Maximiliano R. Vergara ◽  
Theodoros Triantafyllidis

AbstractThe mechanical behavior and the influence of compaction banding on the hydraulic properties in soft porous rocks were studied. The tested rock was Calcarenite Tuffeau de Maastricht. In the frame of experimental investigations, triaxial and oedometric tests were conducted under dry and drained conditions. The results demonstrated that the rock is forming discrete compaction bands under high confining stresses and steep angle shear bands under low confining stresses. Permeability measurements during the oedometric and triaxial compression tests under drained conditions demonstrated that the axial permeability decreases with increasing axial strain. The maximum permeability decrease was three orders of magnitude for 40% of axial strain.


Author(s):  
Julia Leuthold ◽  
Eleni Gerolymatou ◽  
Theodoros Triantafyllidis

AbstractIn this paper the performance of a constitutive model for the description of the hydro mechanical behaviour of soft rock is evaluated with respect to the experimentally observed behaviour of Maastricht Calcarenite under different stress states that is presented in the companion paper. The mechanical model is elasto-plastic and consists of an associated yield surface, internal variables for the description of the hardening and softening behaviour and a non-local extension for the simulation of strain localization in form of shear bands and compaction bands. The model is implemented in the software ABAQUS and the laboratory results from the tests under dry condition with Maastricht Calcarenite are used for the calibration. The good agreement of the numerical results with the laboratory results is shown and the suitability of the model is discussed. To describe the effect of compaction bands on the permeability of soft rocks a simple analytical model based on the Kozeny–Carman equation is proposed and calibrated with the experimental results from drained tests under different stress states for Maastricht Calcarenite rock material. As the results are in good accordance with the experimental results, the model is implemented in the software ABAQUS and the numerical results are presented and discussed. Finally the performance of the model is evaluated and possible improvements are suggested.


2021 ◽  
Author(s):  
Elliot Rice-Birchall ◽  
Daniel Faulkner ◽  
John Bedford

<p>As sandstone reservoirs are depleted, the pore pressure reduction can sometimes result in pore collapse and the formation of compaction bands. These are localised features which can significantly reduce the bulk permeability of the reservoir and are therefore problematic in the oil, water, geothermal, and CO<sub>2</sub> sequestration industries. However, the influence that grain size, grain shape and sorting have on compaction band formation in sandstone is still poorly understood, due to the fact that finding natural sandstones with specific properties is challenging. Consequently, a method of forming synthetic sandstones has been developed, in order to produce a suite of sandstone specimens with controlled grain size and porosity characteristics. During production of the synthetic sandstones, amorphous quartz cement and sodium chloride are precipitated between sand grains as a product of the reaction between sodium silicate and hydrochloric acid. The salt can then be dissolved, resulting in synthetic sandstones that have very comparable physical properties to their natural counterparts. In this study, triaxial experiments were performed on synthetic sandstone cores with four different grain size ranges of 250-300, 425-500, 600-710 and 850-1000 microns, at three different starting porosities of 27%, 32% and 37%. The samples were each axially loaded from a point along their hydrostat corresponding to 85% of their hydrostatic yield point, P*, values. These conditions mean that failure will occur within the shear-enhanced compaction regime so as to try and produce localised compaction structures. All samples were taken to 5% axial strain. The microstructural results indicate that localisation of deformation within the samples did occur and was favoured in the low starting porosity, small grain size samples. Localisation of deformation was most easily recognised by grain size reduction through grain crushing. This was weakly correlated to a change in porosity but recognition of the localisation of deformation was difficult to make using variations in porosity alone. Porosity reduction was not necessarily associated with a reduction in grain size. With increasing grain size and starting porosity, the deformation becomes more distributed in the samples with the highest starting porosity samples (37%) exhibiting more widely distributed grain crushing which was less intense overall. The results indicate a significant grain size and starting porosity influence on localisation, but also that compaction can occur by two mechanisms; one involving mostly grain rearrangement and the other primarily by grain fracturing. Consequently, the localisation of deformation is most evident in grain size reduction and is only weakly shown by porosity reduction.</p>


Solid Earth ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 141-170
Author(s):  
Kathryn E. Elphick ◽  
Craig R. Sloss ◽  
Klaus Regenauer-Lieb ◽  
Christoph E. Schrank

Abstract. We analyse deformation bands related to horizontal contraction with an intermittent period of horizontal extension in Miocene turbidites of the Whakataki Formation south of Castlepoint, Wairarapa, North Island, New Zealand. In the Whakataki Formation, three sets of cataclastic deformation bands are identified: (1) normal-sense compactional shear bands (CSBs), (2) reverse-sense CSBs, and (3) reverse-sense shear-enhanced compaction bands (SECBs). During extension, CSBs are associated with normal faults. When propagating through clay-rich interbeds, extensional bands are characterised by clay smear and grain size reduction. During contraction, sandstone-dominated sequences host SECBs, and rare CSBs, that are generally distributed in pervasive patterns. A quantitative spacing analysis shows that most outcrops are characterised by mixed spatial distributions of deformation bands, interpreted as a consequence of overprint due to progressive deformation or distinct multiple generations of deformation bands from different deformation phases. As many deformation bands are parallel to adjacent juvenile normal faults and reverse faults, bands are likely precursors to faults. With progressive deformation, the linkage of distributed deformation bands across sedimentary beds occurs to form through-going faults. During this process, bands associated with the wall-, tip-, and interaction-damage zones overprint earlier distributions resulting in complex spatial patterns. Regularly spaced bands are pervasively distributed when far away from faults. Microstructural analysis shows that all deformation bands form by inelastic pore collapse and grain crushing with an absolute reduction in porosity relative to the host rock between 5 % and 14 %. Hence, deformation bands likely act as fluid flow barriers. Faults and their associated damage zones exhibit a spacing of 9 m on the scale of 10 km and are more commonly observed in areas characterised by higher mudstone-to-sandstone ratios. As a result, extensive clay smear is common in these faults, enhancing the sealing capacity of faults. Therefore, the formation of deformation bands and faults leads to progressive flow compartmentalisation from the scale of 9 m down to about 10 cm – the typical spacing of distributed, regularly spaced deformation bands.


2020 ◽  
Author(s):  
Kathryn E. Elphick ◽  
Craig R. Sloss ◽  
Klaus Regenauer-Lieb ◽  
Christoph E. Schrank

Abstract. We analyse deformation bands related to both horizontal contraction and horizontal extension in Miocene turbidites of the Whakataki Formation south of Castlepoint, Wairarapa, North Island, New Zealand. In the Whakataki Formation, four sets of cataclastic deformation bands are identified: (1) normal-sense Compactional Shear Bands (CSBs); (2) normal-sense Shear-Enhanced Compaction Bands (SECBs); (3) reverse-sense CSBs; and (4) reverse-sense SECBs. During extension, CSBs form most frequently with rare SECBs. Extensional CSBs are often, but not exclusively, associated with normal faults. During contraction, distributed SECBs are observed most commonly, sometimes clustering around small reverse faults and thrusts. Contractional CSBs are primarily found in the damage zones of reverse faults. The quantitative spacing analysis shows that most outcrops are characterised by mixed spatial distributions of deformation bands, interpreted as a consequence of overprint due to progressive deformation or distinct multiple generations of deformation bands from different deformation phases. Since many deformation bands are parallel to adjacent juvenile normal- and reverse-faults, bands are likely precursors to faults. With progressive deformation, the linkage of distributed deformation bands across sedimentary beds occurs to form through-going faults. During this process, bands associated with the wall-, tip-, and interaction damage zones overprint earlier distributions resulting in complex spatial patterns. Regularly spaced bands are pervasively distributed when far away from faults. Microstructural analysis shows that all deformation bands form by inelastic pore collapse and grain crushing with an absolute reduction in porosity relative to the host rock between 5 and 14 %. Hence, deformation bands likely act as fluid flow barriers. Faults and their associated damage zones exhibit a spacing of order ten metres on the scale of 10 km and are more commonly observed in areas characterised by higher mudstone to sandstone ratios. As a result, extensive clay smear is common in these faults, enhancing the sealing capacity of faults. Therefore, the formation of deformation bands and faults leads to progressive flow compartmentalisation from the scale of ten metres down to about ten centimetres, the typical spacing of distributed deformation bands.


2020 ◽  
Author(s):  
Klaus Regenauer-Lieb ◽  
Christoph Schrank ◽  
Oliver Gaede ◽  
Benjamin Marks ◽  
Manman Hu ◽  
...  

<p>We present the hypothesis that material instabilities based on multiscale and multiphysics dissipative waves hold the key for understanding the universality of physical phenomena that can be observed over many orders of scale. The approach is based on an extended version of the thermodynamic theory with internal variables (see related abstract by Antoine Jacquey et al. for session EMRP1.4 entitled: “Multiphysics of transient deformation processes leading to macroscopic instabilities in geomaterials”). The internal variables can, in many cases, shown to be related to order parameters in Lev Landau’s phase-transition theory. The extension presented in this contribution consists of replacing the jump condition for the symmetry-breaking order parameter at the critical point (e.g., density difference at the liquid-gas transition) through considering a second-order phase transition, where the internal variables change continuously from the critical point due to the propagation of material-damaging dissipative waves. This extension to the first-order theory allows assessing the dynamics of coupling the rates of chemical reactions, failure and fluid-flow as well as thermo-mechanical instabilities of materials. The approach gives physics-based insights into the processes that are commonly described by empirical relationships. Here, we present a first analytical model extended by numerical analyses and laboratory and field observations that show the existence of these precursor phenomena to large-scale instabilities. In the event that the propagating waves lead to a large-scale instability, the dissipation processes are predicted to leave tell-tale multi-scale structures in their wake, which can be used to decipher the dynamic processes underpinning the event.</p><p>First analyses from a laboratory analogue experiment are presented, illustrating the slow speed of the waves and their peculiar dispersion relationships and reflection from boundaries. An idealized 1-D (oedometric) compaction experiment of a highly porous (45% porosity) carbonate rock investigates the emergence of localized compaction bands proposed to be formed by long-term resonant collision of the transient dissipation waves. Complementary numerical models of the phenomenon allow in-depth analysis of the dynamics and illustrate the physics of the formation of dissipative waves.</p><p>For field application, we propose that a multiscale analysis - from the grain- over the outcrop- up to the lithospheric scale - can be used to extract quantitative information directly from natural deformation bands, fractures, and fault zones on, for example, the state of stress, the size of the underlying earthquakes, the flow and mechanical properties of the host rock, and the spatiotemporal evolution of fluid and mechanical pressure associated with faulting. The experimental investigation of the fundamental instability has broader applications in the fields of industrial processing of multiphase materials, civil, mechanical, and reservoir engineering and solid mechanics.</p>


Sign in / Sign up

Export Citation Format

Share Document