flash calculation
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 12)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Mohammad Reza Heidari ◽  
Terry Wayne Stone

Abstract Thermal compositional simulators rely heavily on multicomponent, multiphase flash calculations for a variety of reasons, including reservoir and wellbore initialization, phase appearance and disappearance, and property calculation. In a mass variable formulation, an isenthalpic flash is used for phase split computation, phase saturation update, component mole fraction update in different phases, and temperatures. A natural variable formulation utilizes an isothermal flash mainly for phase appearance and disappearance as well as computation of component mole fractions in appearing phases. Multiphase multicomponent isothermal flash calculations cannot be performed in narrow boiling systems which are very common in the simulation of thermal EOR operations such as Steam-Assisted Gravity Drainage (SAGD) or Steam Flooding (SF). In a narrow boiling point system, pressure and temperature are not linearly independent, and an isothermal flash will fail. In addition, flash calculations are computationally expensive, and reservoir simulators use different techniques to perform them as little as possible. A new thermal stability check has been developed that can be used in thermal compositional simulators and replaces an isothermal flash calculation. The new stability check quickly determines the phase state of a fluid sample and can be used as an initial guess for mole fraction of a phase appearing in the next simulation cycle. In this method, primary variables of the simulator are used as input for the stability check immediately after the nonlinear solver update so that computation of global mole fractions is not required. The new stability check can also be used in separator and isenthalpic flash calculations to determine the phase state of a fluid. An algorithm is provided, covering all different transitions of phase states in a thermal compositional simulator. The proposed algorithm is significantly faster than a flash calculation and saves simulation time spent in this calculation, hence the overall speed up is case dependent. The new stability check is simple, computationally inexpensive, and robust. It can be used for multicomponent and single-component systems, and we tested it rigorously against real field and synthetic models. The new thermal stability check always predicts the number of phase states correctly and never fails. In this paper, we demonstrate a thermal compositional simulation that is run without performing a single flash calculation.


SPE Journal ◽  
2020 ◽  
Vol 25 (06) ◽  
pp. 3332-3348
Author(s):  
Haining Zhao ◽  
Hongbin Jing ◽  
Zhengbao Fang ◽  
Hongwei Yu

Summary On the basis of a previously published reduced-variables method, we demonstrate that using these reduced variables can substantially accelerate the conventional successive-substitution iterations in solving two-phase flash (TPF) problems. By applying the general dominant eigenvalue method (GDEM) to the successive-substitution iterations in terms of the reduced variables, we obtained a highly efficient solution for the TPF problem. We refer to this solution as Reduced-GDEM. The Reduced-GDEM algorithm is then extensively compared with more than 10 linear-acceleration and Newton-Raphson (NR)-type algorithms. The initial equilibrium ratio for flash calculation is generated from reliable phase-stability analysis (PSA). We propose a series of indicators to interpret the PSA results. Two new insights were obtained from the speed comparison among various algorithms and the PSA. First, the speed and robustness of the Reduced-GDEM algorithm are of the same level as that of the reduced-variables NR flash algorithm, which has previously been proved to be the fastest flash algorithm. Second, two-side phase-stability-analysis results indicate that the conventional successive-substitution phase-stability algorithm is time consuming (but robust) at pressures and temperatures near the stability-test limit locus in the single-phase region and near the spinodal in the two-phase region.


2019 ◽  
Vol 394 ◽  
pp. 153-165 ◽  
Author(s):  
Yu Li ◽  
Tao Zhang ◽  
Shuyu Sun ◽  
Xin Gao

Sign in / Sign up

Export Citation Format

Share Document