free node
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Arunanshu Mahapatro ◽  
V CH Sekhar Rao Rayavarapu

<div>Wireless sensor networks (WSNs) is one of the vital part of the Internet of Things (IoT) that allow to acquire and provide information from interconnected sensors. Localization-based services are among the most appealing applications associated to the IoT. The deployment of WSNs in the indoor environments and urban areas creates obstacles that lead to the Non-Line-of-Sight (NLOS) propagation. Additionally, the localization accuracy is minimized by the NLOS propagation. The main intention of this paper is to develop an anchor-free node localization approach in multi-sink WSN under NLOS conditions using three key phases such as LOS/NLOS channel classification, range estimation, and anchor-free node localization. The first phase adopts Heuristicbased Deep Neural Network (H-DNN) for LOS/NLOS channel classification. Further, the same H-DNN s used for the range estimation. The hidden neurons of DNN are optimized using the proposed Adaptive Separating Operator-based Elephant Herding Optimization (ASO-EHO) algorithm. The node localization is formulated as a multi-objective optimization problem. The objectives such as localization error, hardware cost, and energy overhead are taken into consideration. ASO-EHO is used for node localization. The suitability of the proposed anchor-free node localization model is validated by comparing over the existing models with diverse counts of nodes. </div>


2021 ◽  
Author(s):  
Arunanshu Mahapatro ◽  
V CH Sekhar Rao Rayavarapu

<div>Wireless sensor networks (WSNs) is one of the vital part of the Internet of Things (IoT) that allow to acquire and provide information from interconnected sensors. Localization-based services are among the most appealing applications associated to the IoT. The deployment of WSNs in the indoor environments and urban areas creates obstacles that lead to the Non-Line-of-Sight (NLOS) propagation. Additionally, the localization accuracy is minimized by the NLOS propagation. The main intention of this paper is to develop an anchor-free node localization approach in multi-sink WSN under NLOS conditions using three key phases such as LOS/NLOS channel classification, range estimation, and anchor-free node localization. The first phase adopts Heuristicbased Deep Neural Network (H-DNN) for LOS/NLOS channel classification. Further, the same H-DNN s used for the range estimation. The hidden neurons of DNN are optimized using the proposed Adaptive Separating Operator-based Elephant Herding Optimization (ASO-EHO) algorithm. The node localization is formulated as a multi-objective optimization problem. The objectives such as localization error, hardware cost, and energy overhead are taken into consideration. ASO-EHO is used for node localization. The suitability of the proposed anchor-free node localization model is validated by comparing over the existing models with diverse counts of nodes. </div>


2021 ◽  
Vol 17 (4) ◽  
pp. 1-29
Author(s):  
Tuo Shi ◽  
Zhipeng Cai ◽  
Jianzhong Li ◽  
Hong Gao

The energy limitation of wireless sensors limits the lifetime of the traditional wireless sensor networks. The <b>Battery-Free Sensor Network (BF-WSN)</b> is a new network architecture proposed in recent years to address the limitation of wireless sensor networks. In a BF-WSN, the battery-free node can harvest energy from the ambient environment, and thus the lifetime of a BF-WSN is unlimited in terms of energy. The coverage quality is an important measurement of BF-WSNs. Considering the specific features of BF-WSNs, we propose a new deployment concept for BF-WSNs, named <i>Joint Deployment</i>. It aims to determine the locations and working schedules of sensor nodes to maximize network coverage quality. Based on the joint deployment concept, we propose a new deployment problem of battery-free sensor nodes. We prove that this problem is at least NP-Hard. We also analyze the upper bound of this problem. Furthermore, we propose an approximated algorithm to solve this problem and analyze the time complexity and the ratio bound of the algorithm. Extensive simulations are carried out to examine the performance of the proposed algorithm. The simulation results show that the algorithm is efficient and effective.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Wenxiu He ◽  
Fangfang Lu ◽  
Jingjing Chen ◽  
Yi Ruan ◽  
Tingjuan Lu ◽  
...  

Wireless sensors localization is still the main problem concerning wireless sensor networks (WSN). Unfortunately, range-free node localization of WSN results in a fatal weakness–, low accuracy. In this paper, we introduce kernel regression to node localization of anisotropic WSN, which transfers the problem of localization to the problem of kernel regression. Radial basis kernel-based G-LSVR and polynomial-kernel-based P-LSVR proposed are compared with classical DV-Hop in both isotropic WSN and anisotropic WSN under different proportion beacons, network scales, and disturbances of communication range. G-LSVR presents the best localization accuracy and stability from the simulation results.


Information ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Shiying Wang ◽  
Zhenhua Wang

Diagnosability of a multiprocessor system is an important topic of study. A measure for fault diagnosis of the system restrains that every fault-free node has at least g fault-free neighbor vertices, which is called the g-good-neighbor diagnosability of the system. As a famous topology structure of interconnection networks, the n-dimensional bubble-sort graph B n has many good properties. In this paper, we prove that (1) the 1-good-neighbor diagnosability of B n is 2 n − 3 under Preparata, Metze, and Chien’s (PMC) model for n ≥ 4 and Maeng and Malek’s (MM) ∗ model for n ≥ 5 ; (2) the 2-good-neighbor diagnosability of B n is 4 n − 9 under the PMC model and the MM ∗ model for n ≥ 4 ; (3) the 3-good-neighbor diagnosability of B n is 8 n − 25 under the PMC model and the MM ∗ model for n ≥ 7 .


Information ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 275 ◽  
Author(s):  
Shiying Wang ◽  
Yunxia Ren

Diagnosability of a multiprocessor system is an important research topic. The system and interconnection network has a underlying topology, which usually presented by a graph G = ( V , E ) . In 2012, a measurement for fault tolerance of the graph was proposed by Peng et al. This measurement is called the g-good-neighbor diagnosability that restrains every fault-free node to contain at least g fault-free neighbors. Under the PMC model, to diagnose the system, two adjacent nodes in G are can perform tests on each other. Under the MM model, to diagnose the system, a node sends the same task to two of its neighbors, and then compares their responses. The MM* is a special case of the MM model and each node must test its any pair of adjacent nodes of the system. As a famous topology structure, the ( n , k ) -arrangement graph A n , k , has many good properties. In this paper, we give the g-good-neighbor diagnosability of A n , k under the PMC model and MM* model.


2018 ◽  
Vol 24 (2) ◽  
pp. 139-145 ◽  
Author(s):  
Sergej M. Ermakov ◽  
Svetlana N. Leora

Abstract In this paper we discuss estimation of the quasi-Monte Carlo methods error in the case of calculation of high-order integrals. Quasi-random Halton sequences are considered as a special case. Randomization of these sequences by the random shift method turns out to lead to well-known random quadrature formulas with one free node. Some new properties of such formulas are pointed out. The subject is illustrated by a number of numerical examples.


Sign in / Sign up

Export Citation Format

Share Document