bioprocess optimization
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 29)

H-INDEX

13
(FIVE YEARS 3)

Author(s):  
Alice Kasemiire ◽  
Hermane T. Avohou ◽  
Charlotte De Bleye ◽  
Pierre-Yves Sacre ◽  
Elodie Dumont ◽  
...  

2021 ◽  
pp. e00623
Author(s):  
Ahmed I. El-Batal ◽  
Gamal M. El-Sherbiny ◽  
Mahmoud khalaf ◽  
Sobhy S. Abdel-Fatah ◽  
Ashraf S. El-Sayed

Author(s):  
Iris Haberkorn ◽  
Cosima L. Off ◽  
Michael D. Besmer ◽  
Leandro Buchmann ◽  
Alexander Mathys

Microalgae are emerging as a next-generation biotechnological production system in the pharmaceutical, biofuel, and food domain. The economization of microalgal biorefineries remains a main target, where culture contamination and prokaryotic upsurge are main bottlenecks to impair culture stability, reproducibility, and consequently productivity. Automated online flow cytometry (FCM) is gaining momentum as bioprocess optimization tool, as it allows for spatial and temporal landscaping, real-time investigations of rapid microbial processes, and the assessment of intrinsic cell features. So far, automated online FCM has not been applied to microalgal ecosystems but poses a powerful technology for improving the feasibility of microalgal feedstock production through in situ, real-time, high-temporal resolution monitoring. The study lays the foundations for an application of automated online FCM implying far-reaching applications to impel and facilitate the implementation of innovations targeting at microalgal bioprocesses optimization. It shows that emissions collected on the FL1/FL3 fluorescent channels, harnessing nucleic acid staining and chlorophyll autofluorescence, enable a simultaneous assessment (quantitative and diversity-related) of prokaryotes and industrially relevant phototrophic Chlorella vulgaris in mixed ecosystems of different complexity over a broad concentration range (2.2–1,002.4 cells ⋅μL–1). Automated online FCM combined with data analysis relying on phenotypic fingerprinting poses a powerful tool for quantitative and diversity-related population dynamics monitoring. Quantitative data assessment showed that prokaryotic growth phases in engineered and natural ecosystems were characterized by different growth speeds and distinct peaks. Diversity-related population monitoring based on phenotypic fingerprinting indicated that prokaryotic upsurge in mixed cultures was governed by the dominance of single prokaryotic species. Automated online FCM is a powerful tool for microalgal bioprocess optimization owing to its adaptability to myriad phenotypic assays and its compatibility with various cultivation systems. This allows advancing bioprocesses associated with both microalgal biomass and compound production. Hence, automated online FCM poses a viable tool with applications across multiple domains within the biobased sector relying on single cell–based value chains.


Author(s):  
J.N. Bandal ◽  
V.A. Tile ◽  
R. Z. Sayyed ◽  
H.P. Jadhav ◽  
N. I. Wan Azelee ◽  
...  

Using the above results from RMS analysis the optimum values were predicted for the independent significant variables (Figure 3) the optimized levels of these variables in combination with other media variables the maximum production was predicted to be 199.90 U/mL. The predicted data were validated through confirmatory experiments performed in triplicates. A 1.29-fold increase in amylase activity against un-optimized (OVAT) medium was achieved in the present study authenticating the efficacy of RSM in process optimization (Figure 4). 2.6 Model validation and scale-up at laboratory scale (5L) bioreactor Once the parameters were standardized in the shake-flasks culture, the experiment was scaled-up to a laboratory-scale bioreactor (5 L). The yield of amylase increased by 1.01 fold (205.69 U/mL), it could be possible because the enzyme production in a bioreactor is higher than in shake-flasks culture as the various critical variable factors such as the dissolved oxygen (DO) and the pH can be optimally controlled at the desired levels [22].


Sign in / Sign up

Export Citation Format

Share Document