scholarly journals Automated Online Flow Cytometry Advances Microalgal Ecosystem Management as in situ, High-Temporal Resolution Monitoring Tool

Author(s):  
Iris Haberkorn ◽  
Cosima L. Off ◽  
Michael D. Besmer ◽  
Leandro Buchmann ◽  
Alexander Mathys

Microalgae are emerging as a next-generation biotechnological production system in the pharmaceutical, biofuel, and food domain. The economization of microalgal biorefineries remains a main target, where culture contamination and prokaryotic upsurge are main bottlenecks to impair culture stability, reproducibility, and consequently productivity. Automated online flow cytometry (FCM) is gaining momentum as bioprocess optimization tool, as it allows for spatial and temporal landscaping, real-time investigations of rapid microbial processes, and the assessment of intrinsic cell features. So far, automated online FCM has not been applied to microalgal ecosystems but poses a powerful technology for improving the feasibility of microalgal feedstock production through in situ, real-time, high-temporal resolution monitoring. The study lays the foundations for an application of automated online FCM implying far-reaching applications to impel and facilitate the implementation of innovations targeting at microalgal bioprocesses optimization. It shows that emissions collected on the FL1/FL3 fluorescent channels, harnessing nucleic acid staining and chlorophyll autofluorescence, enable a simultaneous assessment (quantitative and diversity-related) of prokaryotes and industrially relevant phototrophic Chlorella vulgaris in mixed ecosystems of different complexity over a broad concentration range (2.2–1,002.4 cells ⋅μL–1). Automated online FCM combined with data analysis relying on phenotypic fingerprinting poses a powerful tool for quantitative and diversity-related population dynamics monitoring. Quantitative data assessment showed that prokaryotic growth phases in engineered and natural ecosystems were characterized by different growth speeds and distinct peaks. Diversity-related population monitoring based on phenotypic fingerprinting indicated that prokaryotic upsurge in mixed cultures was governed by the dominance of single prokaryotic species. Automated online FCM is a powerful tool for microalgal bioprocess optimization owing to its adaptability to myriad phenotypic assays and its compatibility with various cultivation systems. This allows advancing bioprocesses associated with both microalgal biomass and compound production. Hence, automated online FCM poses a viable tool with applications across multiple domains within the biobased sector relying on single cell–based value chains.

2018 ◽  
Author(s):  
Barbara Herbstritt ◽  
Benjamin Gralher ◽  
Markus Weiler

Abstract. The isotopic composition of throughfall is affected by complex exchange, enrichment, and mixing processes in the tree canopy. All interception processes occur simultaneously in space and time generating a complex pattern of throughfall in amount and isotopic composition. This pattern ultimately cascades through the entire hydrologic system and is therefore crucial for studies in catchment hydrology where recharge areas are often forested while reference meteorological stations are generally in the open. For the quasi real-time observation of the isotopic composition of both gross precipitation and throughfall we developed an approach combining an off-the-shelf membrane contactor (Membrana) with a laser-based Cavity Ring-Down Spectrometer (CRDS, Picarro), obtaining isotope readings every two seconds. For the continuous observation of the temporal effect of interception processes two setups with two CRDS instruments in parallel were used analysing gross precipitation and throughfall simultaneously. All devices were kept small to minimize dead volume and thereby, with time-lags of only four minutes, to increase the temporal resolution of isotope observations. Complementarily, meteorological variables were recorded in high temporal resolution at the same location. Comparing these high temporally resolved continuous measurements with discrete liquid or event-based bulk samples, this approach proves to be a powerful tool towards more insight in the very dynamic processes contributing to interception during rainfall events.


2019 ◽  
Vol 2 (1) ◽  
pp. 7 ◽  
Author(s):  
Francesco Giardini ◽  
Valentina Biasci ◽  
Marina Scardigli ◽  
Francesco S. Pavone ◽  
Gil Bub ◽  
...  

Optogenetics is an emerging method that uses light to manipulate electrical activity in excitable cells exploiting the interaction between light and light-sensitive depolarizing ion channels, such as channelrhodopsin-2 (ChR2). Initially used in the neuroscience, it has been adopted in cardiac research where the expression of ChR2 in cardiac preparations allows optical pacing, resynchronization and defibrillation. Recently, optogenetics has been leveraged to manipulate cardiac electrical activity in the intact heart in real-time. This new approach was applied to simulate a re-entrant circuit across the ventricle. In this technical note, we describe the development and the implementation of a new software package for real-time optogenetic intervention. The package consists of a single LabVIEW program that simultaneously captures images at very high frame rates and delivers precisely timed optogenetic stimuli based on the content of the images. The software implementation guarantees closed-loop optical manipulation at high temporal resolution by processing the raw data in workstation memory. We demonstrate that this strategy allows the simulation of a ventricular tachycardia with high stability and with a negligible loss of data with a temporal resolution of up to 1 ms.


2021 ◽  
Vol 906 (1) ◽  
pp. 012058
Author(s):  
Jan Douša ◽  
Pavel Václavovic ◽  
Petr Bezdĕka ◽  
Guergana Guerova

Abstract Near real-time GNSS double-difference network processing is a traditional method still used within the EUMETNET EIG GNSS Water Vapour Programme (E-GVAP) for the atmosphere water vapour content monitoring in support of Numerical Weather Prediction. The standard production relies on estimating zenith tropospheric path delays (ZTDs) for GNSS ground stations with a 1-hour time resolution and a latency of 90 minutes. The Precise Point Positioning (PPP) method in real-time mode has reached the reliability and the accuracy comparable to the near real-time solution. The effectiveness of the PPP method relies on exploiting undifferenced observations from individual receivers, thus optimal use of all tracked systems, observations and signal bands, possible in-situ processing, high temporal resolution of estimated parameters and almost without any latency. The solution may implicitly include horizontal tropospheric gradients and slant tropospheric path delays for enabling the monitoring of a local asymmetry of the troposphere around each individual site. We have been estimating ZTD and gradients in real-time continuously since 2015 with a limited number of stations. Recently, the solution has been extended to a pan-European and global production consisting of approximately 200 stations. The real-time product has been assessed cross-comparing ZTDs and horizontal gradients at 11 collocated stations and by validating real-time ZTDs with respect to the final post-processing products.


2014 ◽  
Vol 73 (2) ◽  
pp. 749-756 ◽  
Author(s):  
Grzegorz T. Kowalik ◽  
Daniel S. Knight ◽  
Jennifer A. Steeden ◽  
Oliver Tann ◽  
Freddy Odille ◽  
...  

Lab on a Chip ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2038-2048 ◽  
Author(s):  
Isabelle C. Samper ◽  
Sally A. N. Gowers ◽  
Michelle L. Rogers ◽  
De-Shaine R. K. Murray ◽  
Sharon L. Jewell ◽  
...  

Microfluidic devices optimised for real-time monitoring of the human brain.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 565
Author(s):  
Amir Sahraei ◽  
Philipp Kraft ◽  
David Windhorst ◽  
Lutz Breuer

High temporal resolution (20-min intervals) measurements of stable isotopes from groundwater, stream water and precipitation were investigated to understand the hydrological response behavior and control of precipitation and antecedent wetness conditions on runoff generation. Data of 20 precipitation events were collected by a self-sufficient mobile system for in situ measurements over four months in the Schwingbach Environmental Observatory (SEO, temperate climate), Germany. Isotopic hydrograph separation indicated that more than 79% of the runoff consisted of pre-event water. Short response times of maximum event water fractions in stream water and groundwater revealed that shallow subsurface flow pathways rapidly delivered water to the stream. Macropore and soil pipe networks along relatively flat areas in stream banks were likely relevant pathways for the rapid transmission of water. Event water contribution increased with increasing precipitation amount. Pre-event water contribution was moderately affected by precipitation, whereas, the antecedent wetness conditions were not strong enough to influence pre-event water contribution. The response time was controlled by mean precipitation intensity. A two-phase system was identified, at which the response times of stream water and groundwater decreased after reaching a threshold of mean precipitation intensity of 0.5 mm h−1. Our results suggest that high temporal resolution measurements of stable isotopes of multiple water sources combined with hydrometrics improve the understanding of the hydrological response behavior and runoff generation mechanisms.


Sign in / Sign up

Export Citation Format

Share Document