turbulence parameterization
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 2)

2019 ◽  
Vol 76 (11) ◽  
pp. 3367-3386 ◽  
Author(s):  
Xiaoming Shi ◽  
Rica Mae Enriquez ◽  
Robert L. Street ◽  
George H. Bryan ◽  
Fotini Katopodes Chow

Abstract Turbulence parameterization plays a critical role in the simulation of many weather regimes. For challenging cases such as the stratocumulus-capped boundary layer (SCBL), traditional schemes can produce unrealistic results even when a fine large-eddy-simulation (LES) resolution is used. Here we present an implicit generalized linear algebraic subfilter-scale model (iGLASS) to better represent unresolved turbulence in the simulation of the atmospheric boundary layer, at both standard LES and so-called terra incognita (TI) resolutions. The latter refers to a range of model resolutions where turbulent eddies are only partially resolved, and therefore the simulated processes are sensitive to the representation of unresolved turbulence. iGLASS is based on the truncated conservation equations of subfilter-scale (SFS) fluxes, but it integrates the full equations of the SFS turbulence kinetic energy and potential energy to retain “memory” of the SFS turbulence. Our evaluations suggest iGLASS can perform significantly better than traditional eddy-diffusivity models and exhibit skills comparable to the dynamic reconstruction model (DRM). For a neutral boundary layer case run at LES resolution, the simulation using iGLASS exhibits a wind profile that reasonably matches the similarity-theory solution. For an SCBL case with 5-m vertical resolution, iGLASS maintains more realistic cloud water profiles and boundary layer structure than traditional schemes. The SCBL case is also tested at TI resolution, and iGLASS also exhibits superior performance. iGLASS permits significant backscatter, whereas traditional models allow forward scatter (diffusion) only. As a physics-based approach, iGLASS appears to be a viable alternative for turbulence parameterization.


2019 ◽  
Vol 58 (9) ◽  
pp. 2087-2102 ◽  
Author(s):  
Brigitta Goger ◽  
Mathias W. Rotach ◽  
Alexander Gohm ◽  
Ivana Stiperski ◽  
Oliver Fuhrer ◽  
...  

AbstractThe correct simulation of the atmospheric boundary layer (ABL) in highly complex terrain is a challenge for mesoscale numerical weather prediction models. An improvement in model performance is possible if horizontal contributions to turbulence kinetic energy (TKE) production, such as horizontal shear production, are implemented in the model’s turbulence parameterization. However, 3D turbulence parameterizations often only have a constant horizontal length scale that depends on the horizontal grid spacing. This is unphysical for mesoscale applications, because such parameterizations were initially developed for much smaller model grid spacings (e.g., for large-eddy simulations). In this study, we develop a new physically based horizontal length scale for the high-resolution mesoscale model COSMO. We analyze days dominated by thermally driven circulations (valley wind days) in the Inn Valley, Austria. Results show that the new horizontal length scale improves TKE simulations in the valley, when horizontal shear processes contribute to the overall TKE budget. Vertical profiles of TKE and transects across the valley indicate that the model simulates the ABL in a more realistic way than standard turbulence schemes, because the new scheme is able to account for terrain inhomogeneities. A model validation with 88 stations in Austria for four case study days indicates no change in the mean surface fields of temperature, relative humidity, and wind speed by the new turbulence parameterization.


Author(s):  
M. E. S. Welter ◽  
H. F. de Campos Velho ◽  
S. R. Freitas ◽  
R. S. R. Ruiz

2016 ◽  
Vol 55 (6) ◽  
pp. 1391-1407 ◽  
Author(s):  
M. Shapkalijevski ◽  
A. F. Moene ◽  
H. G. Ouwersloot ◽  
E. G. Patton ◽  
J. Vilà-Guerau de Arellano

Abstract In this observational study, the role of tree phenology on the atmospheric turbulence parameterization over 10-m-tall and relatively sparse deciduous vegetation is quantified. Observations from the Canopy Horizontal Array Turbulence Study (CHATS) field experiment are analyzed to establish the dependence of the turbulent exchange of momentum, heat, and moisture, as well as kinetic energy on canopy phenological evolution through widely used parameterization models based on 1) dimensionless gradients or 2) turbulent kinetic energy (TKE) in the roughness sublayer. Observed vertical turbulent fluxes and gradients of mean wind, temperature, and humidity, as well as velocity variances, are used in combination with empirical dimensionless functions to calculate the turbulent exchange coefficient. The analysis shows that changes in canopy phenology influence the turbulent exchange of all quantities analyzed in this study. The turbulent exchange coefficients of those quantities are twice as large near the canopy top for a leafless canopy than for a full-leaf canopy under unstable and near-neutral conditions. This turbulent exchange coefficient difference is related to the differing penetration depths of the turbulent eddies organized at the canopy top, which increase for a canopy without leaves. The TKE and dissipation analysis under near-neutral atmospheric conditions additionally shows that TKE exchange increases for a leafless canopy because of reduced TKE dissipation efficiency relative to that when the canopy is in full-leaf stage. The study closes with discussion surrounding the implications of these findings for parameterizations used in large-scale models.


2015 ◽  
Vol 72 (9) ◽  
pp. 3537-3562 ◽  
Author(s):  
Sebastian Remmler ◽  
Stefan Hickel ◽  
Mark D. Fruman ◽  
Ulrich Achatz

Abstract To reduce the computational costs of numerical studies of gravity wave breaking in the atmosphere, the grid resolution has to be reduced as much as possible. Insufficient resolution of small-scale turbulence demands a proper turbulence parameterization in the framework of a large-eddy simulation (LES). The authors validate three different LES methods—the adaptive local deconvolution method (ALDM), the dynamic Smagorinsky method (DSM), and a naïve central discretization without turbulence parameterization (CDS4)—for three different cases of the breaking of well-defined monochromatic gravity waves. For ALDM, a modification of the numerical flux functions is developed that significantly improves the simulation results in the case of a temporarily very smooth velocity field. The test cases include an unstable and a stable inertia–gravity wave as well as an unstable high-frequency gravity wave. All simulations are carried out both in three-dimensional domains and in two-dimensional domains in which the velocity and vorticity fields are three-dimensional (so-called 2.5D simulations). The results obtained with ALDM and DSM are generally in good agreement with the reference direct numerical simulations as long as the resolution in the direction of the wave vector is sufficiently high. The resolution in the other directions has a weaker influence on the results. The simulations without turbulence parameterization are only successful if the resolution is high and the level of turbulence is comparatively low.


Sign in / Sign up

Export Citation Format

Share Document