polar structure
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 19)

H-INDEX

16
(FIVE YEARS 3)

Silicon ◽  
2022 ◽  
Author(s):  
E. Sathish Kumar ◽  
Suresh Kumar P ◽  
N. Arun Vignesh ◽  
S. Kanithan
Keyword(s):  

2021 ◽  
Vol 163 (1) ◽  
pp. 1
Author(s):  
Dana I. Casetti-Dinescu ◽  
Caitlin K. Hansen ◽  
Terrence M. Girard ◽  
Vera Kozhurina-Platais ◽  
Imants Platais ◽  
...  

Abstract We measure the absolute proper motion of Leo I using a WFPC2/HST data set that spans up to 10 yr to date the longest time baseline utilized for this satellite. The measurement relies on ∼2300 Leo I stars located near the center of light of the galaxy; the correction to absolute proper motion is based on 174 Gaia EDR3 stars and 10 galaxies. Having generated highly precise, relative proper motions for all Gaia EDR3 stars in our WFPC2 field of study, our correction to the absolute EDR3 system does not rely on these Gaia stars being Leo I members. This new determination also benefits from a recently improved astrometric calibration of WFPC2. The resulting proper-motion value, (μ α , μ δ ) = (−0.007 ± 0.035, − 0.119 ± 0.026) mas yr−1 is in agreement with recent, large-area, Gaia EDR3-based determinations. We discuss all the recent measurements of Leo I’s proper motion and adopt a combined, multistudy average of ( μ α 3 meas , μ δ 3 meas ) = ( − 0.036 ± 0.016 , − 0.130 ± 0.010 ) mas yr−1. This value of absolute proper motion for Leo I indicates its orbital pole is well aligned with that of the vast polar structure, defined by the majority of the brightest dwarf spheroidal satellites of the Milky Way.


Author(s):  
Fabian Grahlow ◽  
Eric Dorsch ◽  
Markus Ströbele ◽  
Carl P. Romao ◽  
Hans-Jürgen Meyer

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tong Zhu ◽  
Fabio Orlandi ◽  
Pascal Manuel ◽  
Alexandra S. Gibbs ◽  
Weiguo Zhang ◽  
...  

AbstractPreparing materials which simultaneously exhibit spontaneous magnetic and electrical polarisations is challenging as the electronic features which are typically used to stabilise each of these two polarisations in materials are contradictory. Here we show that by performing low-temperature cation-exchange reactions on a hybrid improper ferroelectric material, Li2SrTa2O7, which adopts a polar structure due to a cooperative tilting of its constituent TaO6 octahedra rather than an electronically driven atom displacement, a paramagnetic polar phase, MnSrTa2O7, can be prepared. On cooling below 43 K the Mn2+ centres in MnSrTa2O7 adopt a canted antiferromagnetic state, with a small spontaneous magnetic moment. On further cooling to 38 K there is a further transition in which the size of the ferromagnetic moment increases coincident with a decrease in magnitude of the polar distortion, consistent with a coupling between the two polarisations.


2020 ◽  
Vol 32 (19) ◽  
pp. 8619-8632
Author(s):  
Jennifer Knaus ◽  
Martin Sommer ◽  
Patrick Duchstein ◽  
Roman Gumeniuk ◽  
Lev Akselrud ◽  
...  

2020 ◽  
Vol 10 (38) ◽  
pp. 2001802
Author(s):  
Yaqiong Wang ◽  
Man Zhang ◽  
Jianguo Liu ◽  
Haibin Zhang ◽  
Feng Li ◽  
...  
Keyword(s):  

2020 ◽  
Vol 494 (1) ◽  
pp. 983-1001 ◽  
Author(s):  
Alexander H Riley ◽  
Louis E Strigari

ABSTRACT There is increasing evidence that a substantial fraction of Milky Way satellite galaxies align in a rotationally supported plane of satellites, a rare configuration in cosmological simulations of galaxy formation. It has been suggested that other Milky Way substructures (namely young halo globular clusters and stellar/gaseous streams) similarly tend to align with this plane, accordingly dubbed the Vast Polar Structure (VPOS). Using systemic proper motions inferred from Gaia data, we find that globular cluster orbital poles are not clustered in the VPOS direction, though the population with the highest VPOS membership fraction is the young halo clusters (∼30 per cent). We additionally provide a current census of stellar streams, including new streams discovered using the Dark Energy Survey and Gaia data sets, and find that stellar stream normals are also not clustered in the direction of the VPOS normal. We also find that, based on orbit modelling, there is a likely association between NGC 3201 and the Gjöll stellar stream and that, based on its orbital pole, NGC 4147 is likely not a Sagittarius globular cluster. That the Milky Way’s accreted globular clusters and streams do not align in the same planar configuration as its satellites suggests that the plane of satellites is either a particularly stable orbital configuration or a population of recently accreted satellites. Neither of these explanations is particularly likely in light of other recent studies, leaving the plane of satellites problem as one of the more consequential open problems in galaxy formation and cosmology.


2020 ◽  
Vol 101 (2) ◽  
Author(s):  
W. Zheng ◽  
V. Balédent ◽  
M. B. Lepetit ◽  
P. Retailleau ◽  
E. V. Elslande ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document