quantum chaos
Recently Published Documents


TOTAL DOCUMENTS

1126
(FIVE YEARS 173)

H-INDEX

64
(FIVE YEARS 10)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Mike Blake ◽  
Richard A. Davison

Abstract We study the connection between many-body quantum chaos and energy dynamics for the holographic theory dual to the Kerr-AdS black hole. In particular, we determine a partial differential equation governing the angular profile of gravitational shock waves that are relevant for the computation of out-of-time ordered correlation functions (OTOCs). Further we show that this shock wave profile is directly related to the behaviour of energy fluctuations in the boundary theory. In particular, we demonstrate using the Teukolsky formalism that at complex frequency ω∗ = i2πT there exists an extra ingoing solution to the linearised Einstein equations whenever the angular profile of metric perturbations near the horizon satisfies this shock wave equation. As a result, for metric perturbations with such temporal and angular profiles we find that the energy density response of the boundary theory exhibit the signatures of “pole-skipping” — namely, it is undefined, but exhibits a collective mode upon a parametrically small deformation of the profile. Additionally, we provide an explicit computation of the OTOC in the equatorial plane for slowly rotating large black holes, and show that its form can be used to obtain constraints on the dispersion relations of collective modes in the dual CFT.


Author(s):  
Longwen Zhou ◽  
Yongjian Gu

Abstract Non-Hermitian effects could trigger spectrum, localization and topological phase transitions in quasiperiodic lattices. We propose a non-Hermitian extension of the Maryland model, which forms a paradigm in the study of localization and quantum chaos by introducing asymmetry to its hopping amplitudes. The resulting nonreciprocal Maryland model is found to possess a real-to-complex spectrum transition at a finite amount of hopping asymmetry, through which it changes from a localized phase to a mobility edge phase. Explicit expressions of the complex energy dispersions, phase boundaries and mobility edges are found. A topological winding number is further introduced to characterize the transition between different phases. Our work introduces a unique type of non-Hermitian quasicrystal, which admits exactly obtainable phase diagrams, mobility edges, and holding no extended phases at finite nonreciprocity in the thermodynamic limit.


2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Panagiotis Betzios ◽  
Nava Gaddam ◽  
Olga Papadoulaki

Quantum gravity is expected to gauge all global symmetries of effective theories, in the ultraviolet. Inspired by this expectation, we explore the consequences of gauging CPT as a quantum boundary condition in phase space. We find that it provides for a natural semiclassical regularisation and discretisation of the continuous spectrum of a quantum Hamiltonian related to the Dilation operator. We observe that the said spectrum is in correspondence with the zeros of the Riemann zeta and Dirichlet beta functions. Following ideas of Berry and Keating, this may help the pursuit of the Riemann hypothesis. It strengthens the proposal that this quantum Hamiltonian captures the near horizon dynamics of the scattering matrix of the Schwarzschild black hole, given the rich chaotic spectrum upon discretisation. It also explains why the spectrum appears to be erratic despite the unitarity of the scattering matrix.


2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Haoyu Guan ◽  
Wenxian Zhang

Computation of a large group of interior eigenvalues at the middle spectrum is an important problem for quantum many-body systems, where the level statistics provides characteristic signatures of quantum chaos. We propose an exact numerical method, dual applications of Chebyshev polynomials (DACP), to simultaneously find thousands of central eigenvalues, where the level space decreases exponentially with the system size. To disentangle the near-degenerate problem, we employ twice the Chebyshev polynomials, to construct an exponential semicircle filter as a preconditioning step and to generate a large set of proper basis states in the desired subspace. Numerical calculations on Ising spin chain and spin glass shards confirm the correctness and efficiency of DACP. As numerical results demonstrate, DACP is 30 times faster than the state-of-the-art shift-invert method for the Ising spin chain while 8 times faster for the spin glass shards. In contrast to the shift-invert method, the computation time of DACP is only weakly influenced by the required number of eigenvalues, which renders it a powerful tool for large scale eigenvalues computations. Moreover, the consumed memory also remains a small constant (5.6 GB) for spin-1/2 systems consisting of up to 20 spins, making it desirable for parallel computing.


2021 ◽  
Vol 127 (23) ◽  
Author(s):  
Hansveer Singh ◽  
Brayden A. Ware ◽  
Romain Vasseur ◽  
Aaron J. Friedman
Keyword(s):  

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
David M. Ramirez

Abstract Recent work has suggested an intriguing relation between quantum chaos and energy density correlations, known as pole skipping. We investigate this relationship in two dimensional conformal field theories on a finite size spatial circle by studying the thermal energy density retarded two-point function on a torus. We find that the location ω* = iλ of pole skipping in the complex frequency plane is determined by the central charge and the stress energy one-point function 〈T〉 on the torus. In addition, we find a bound on λ in c > 1 compact, unitary CFT2s identical to the chaos bound, λ ≤ 2πT. This bound is saturated in large c CFT2s with a sparse light spectrum, as quantified by [1], for all temperatures above the dual Hawking-Page transition temperature.


2021 ◽  
Vol 104 (20) ◽  
Author(s):  
Tyler LeBlond ◽  
Dries Sels ◽  
Anatoli Polkovnikov ◽  
Marcos Rigol

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Junggi Yoon

Abstract We explore the quantum chaos of the coadjoint orbit action of diffeomorphism group of S1. We study quantum fluctuation around a saddle point to evaluate the soft mode contribution to the out-of-time-ordered correlator. We show that the stability condition of the semi-classical analysis of the coadjoint orbit found in [1] leads to the upper bound on the Lyapunov exponent which is identical to the bound on chaos proven in [2]. The bound is saturated by the coadjoint orbit Diff(S1)/SL(2) while the other stable orbit Diff(S1)/U(1) where the SL(2, ℝ) is broken to U(1) has non-maximal Lyapunov exponent.


Sign in / Sign up

Export Citation Format

Share Document