verification theorem
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 14)

H-INDEX

7
(FIVE YEARS 2)

Stats ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 1012-1026
Author(s):  
Sahar Albosaily ◽  
Serguei Pergamenchtchikov

We consider a spread financial market defined by the multidimensional Ornstein–Uhlenbeck (OU) process. We study the optimal consumption/investment problem for logarithmic utility functions using a stochastic dynamical programming method. We show a special verification theorem for this case. We find the solution to the Hamilton–Jacobi–Bellman (HJB) equation in explicit form and as a consequence we construct optimal financial strategies. Moreover, we study the constructed strategies with numerical simulations.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yanan Li ◽  
Chuanzheng Li

We examine the optimal time to merge two first-line insurers with proportional reinsurance policies. The problem is considered in a diffusion approximation model. The objective is to maximize the survival probability of the two insurers. First, the verification theorem is verified. Then, we divide the problem into two cases. In case 1, never merging is optimal and the two insurers follow the optimal reinsurance policies that maximize their survival probability. In case 2, the two insurers follow the same reinsurance policies as those in case 1 until the sum of their surplus processes reaches a boundary. Then, they merge and apply the merged company’s optimal reinsurance strategy.


Author(s):  
Ralf Korn ◽  
Lukas Müller

AbstractInsurance companies and banks regularly have to face stress tests performed by regulatory instances. To model their investment decision problems that includes stress scenarios, we propose the worst-case portfolio approach. Thus, the resulting optimal portfolios are already stress test prone by construction. A central issue of the worst-case portfolio approach is that neither the time nor the order of occurrence of the stress scenarios are known. Even more, there are no probabilistic assumptions regarding the occurrence of the stresses. By defining the relative worst-case loss and introducing the concept of minimum constant portfolio processes, we generalize the traditional concepts of the indifference frontier and the indifference-optimality principle. We prove the existence of a minimum constant portfolio process that is optimal for the multi-stress worst-case problem. As a main result we derive a verification theorem that provides conditions on Lagrange multipliers and nonlinear ordinary differential equations that support the construction of optimal worst-case portfolio strategies. The practical applicability of the verification theorem is demonstrated via numerical solution of various worst-case problems with stresses. There, it is in particular shown that an investor who chooses the worst-case optimal portfolio process may have a preference regarding the order of stresses, but there may also be stress scenarios where he/she is indifferent regarding the order and time of occurrence.


2021 ◽  
Vol 21 (2) ◽  
pp. 253-267
Author(s):  
Alain Bensoussan ◽  
SingRu (Celine) Hoe ◽  
Joohyun Kim ◽  
Zhongfeng Yan
Keyword(s):  

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Ruimin Xu ◽  
Rongwei Guo

In this paper, we study the necessary conditions as well as sufficient conditions for optimality of stochastic SEIR model. The most distinguishing feature, compared with the well-studied SEIR model, is that the model system follows stochastic differential equations (SDEs) driven by Brownian motions. Hamiltonian function is introduced to derive the necessary conditions. Using the explicit formulation of adjoint variables, desired necessary conditions for optimal control results are obtained. We also establish a sufficient condition which is called verification theorem for the stochastic SEIR model.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Tong Wang ◽  
Hao Liang

We investigate a stochastic differential equation driven by Poisson random measure and its application in a duopoly market for a finite number of consumers with two unknown preferences. The scopes of pricing for two monopolistic vendors are illustrated when the prices of items are determined by the number of buyers in the market. The quantity of buyers is proved to obey a stochastic differential equation (SDE) driven by Poisson random measure which exists a unique solution. We derive the Hamilton-Jacobi-Bellman (HJB) about vendors’ profits and provide a verification theorem about the problem. When all consumers believe a vendor’s guidance about their preferences, the conditions that the other vendor’s profit is zero are obtained. We give an example of this problem and acquire approximate solutions about the profits of the two vendors.


Sign in / Sign up

Export Citation Format

Share Document