very high resolution imagery
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 26)

H-INDEX

19
(FIVE YEARS 3)

MAUSAM ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 187-194
Author(s):  
D. S. UPADHYAY ◽  
D. K. MISHRA ◽  
A. P. JOHRI ◽  
A. K. SRIVASTAVA

This paper aims at evolving a conceptual technique for the computation of water yield from the basin snow cover. It may serve as a useful information to compute the snowmelt driven run-off particularly in the lean summer season. For this purpose, the measurement of snow cover area in catchment of Satluj river using very high resolution imagery received from the meteorological satellite NOAA-9 was undertaken on selected dates during the periods, (i) October 1985 to May 1986, and (ii) January to June 1987. The computed snowmelt water yield have been compared with the available actual run-off data. The study shows that the satellite derived snow cover data are potentially useful in predicting the snowmelt run-off. The importance of this technique is further enhanced for the large watersheds over Himalayas where ground based measurements are too scanty.


2021 ◽  
Vol 13 (20) ◽  
pp. 4042
Author(s):  
Marina Leibman ◽  
Alexander Kizyakov ◽  
Yekaterina Zhdanova ◽  
Anton Sonyushkin ◽  
Mikhail Zimin

Thermodenudation on the Kara seacoast, the Yugorsky Peninsula, Russia, is studied by analyzing remote-sensing data. Landforms resulting from the thaw of tabular ground ice, referred to as thermocirques, are formed due to polycyclic retrogressive thaw slumps, during the last decade 2010–2020. We calculate the retreat rate of the thermocirque edge using various statistical approaches. We compared thermocirque outlines by the end of each time interval defined by the dates of available very-high-resolution imagery. Six thermocirques within two key sites on the Yugorsky peninsula are monitored. We correlate each of the thermocirque edge’s retreat rates to various climatic parameters obtained at the Amderma weather station to understand the interrelation patterns better. As a result, we find a very low correlation between the retreat rate of each thermocirque and summer warmth, rainfall, and wave action. In general, the activity of thermodenudation decreases in time from the previous decade (2001–2010) to 2010–2020, and from 2010 towards 2020, although the summer warmth trend increases dramatically. A single thermocirque or series of thermocirques expand in response to environmental and geological factors in coastal retreat caused by thermodenudation.


2021 ◽  
Author(s):  
Gregoire Guillet ◽  
Owen King ◽  
Mingyang Lv ◽  
Sajid Ghuffar ◽  
Douglas Benn ◽  
...  

Abstract. Knowledge about the occurrence and characteristics of surge-type glaciers is crucial due to the impact of surging on glacier melt and glacier related hazards. One of the "super-clusters" of surge-type glaciers is the mountains of Asia. However, no consistent region-wide inventory of surge-type glaciers in High Mountain Asia exists. We present a regionally resolved inventory of surge-type glaciers based on their behaviour across High Mountain Asia between 2000 and 2018. We identify surge-type behaviour from surface velocity, elevation and feature change patterns using a multi-factor remote sensing approach that combines yearly ITS_LIVE velocity data, DEM differences and very-high resolution imagery (Bing Maps, Google Earth). Out of the ≈ 95000 glaciers in HMA, we identified 666 that show diagnostic surge-type glacier behaviour between 2000 and 2018, which are mainly found in the Karakoram (223) and the Pamir regions (223). The total area covered by the 666 surge-type glaciers represents 19.5 % of the glacierized area in Randolph Glacier Inventory (RGI) V6.0 polygons in HMA. Across all regions of HMA, the surge-affected area within glacier complexes displays a significant power law dependency with glacier length. We validate 107 previously identified glaciers as surge-type and newly identify 491 glaciers. We finally discuss the possibility of self-organized criticality in glacier surges.


2021 ◽  
Vol 974 (8) ◽  
pp. 36-44
Author(s):  
R.V. Permyakov

Stereopairs of very-high resolution satellite imagery constitute one of the key high-accurate data sources on heights. A stereophotogrammetric technique is a key method of processing these data. Despite that a number of spacecrafts gathering very-high-resolution imagery in a stereo mode constantly increases, the area of the Earth regularly covered by such data and stored in the archives of RSD operators remains relatively small and, as a rule, is limited only to large urban agglomerations. The new collection may not suit the customer for several reasons. Firstly, the materials of the new stereo collection are more expensive than those of the archived one. Secondly, due to unfavourable weather conditions and a busy schedule of satellites, the completion of the new collection may go beyond the deadline specified by the customer. Well known and brand-new criteria to form multi-temporal, stereopairs are analyzed. The specific of photogrammetric processing multi-temporal stereopairs is demonstrated. Application of multi-temporal stereopairs is described. In conclusion it is confirmed that 3D-models and high accurate DTMs can be generated basing on stereo models from multi-temporal satellite imagery in the absence of the following data


2021 ◽  
Vol 13 (17) ◽  
pp. 3385
Author(s):  
Dong Chen ◽  
Tatiana V. Loboda ◽  
Julie A. Silva ◽  
Maria R. Tonellato

While remotely sensed images of various resolutions have been widely used in identifying changes in urban and peri-urban environments, only very high resolution (VHR) imagery is capable of providing the information needed for understanding the changes taking place in remote rural environments, due to the small footprints and low density of man-made structures in these settings. However, limited by data availability, mapping man-made structures and conducting subsequent change detections in remote areas are typically challenging and thus require a certain level of flexibility in algorithm design that takes into account the specific environmental and image conditions. In this study, we mapped all buildings and corrals for two remote villages in Mozambique based on two single-date VHR images that were taken in 2004 and 2012, respectively. Our algorithm takes advantage of the presence of shadows and, through a fusion of both spectra- and object-based analysis techniques, is able to differentiate buildings with metal and thatch roofs with high accuracy (overall accuracy of 86% and 94% for 2004 and 2012, respectively). The comparison of the mapping results between 2004 and 2012 reveals multiple lines of evidence suggesting that both villages, while differing in many aspects, have experienced substantial increases in the economic status. As a case study, our project demonstrates the capability of a coupling of VHR imagery with locally adjusted classification algorithms to infer the economic development of small, remote rural settlements.


2021 ◽  
Vol 13 (13) ◽  
pp. 2508
Author(s):  
Loredana Oreti ◽  
Diego Giuliarelli ◽  
Antonio Tomao ◽  
Anna Barbati

The importance of mixed forests is increasingly recognized on a scientific level, due to their greater productivity and efficiency in resource use, compared to pure stands. However, a reliable quantification of the actual spatial extent of mixed stands on a fine spatial scale is still lacking. Indeed, classification and mapping of mixed populations, especially with semi-automatic procedures, has been a challenging issue up to date. The main objective of this study is to evaluate the potential of Object-Based Image Analysis (OBIA) and Very-High-Resolution imagery (VHR) to detect and map mixed forests of broadleaves and coniferous trees with a Minimum Mapping Unit (MMU) of 500 m2. This study evaluates segmentation-based classification paired with non-parametric method K- nearest-neighbors (K-NN), trained with a dataset independent from the validation one. The forest area mapped as mixed forest canopies in the study area amounts to 11%, with an overall accuracy being equal to 85% and K of 0.78. Better levels of user and producer accuracies (85–93%) are reached in conifer and broadleaved dominated stands. The study findings demonstrate that the very high resolution images (0.20 m of spatial resolutions) can be reliably used to detect the fine-grained pattern of rare mixed forests, thus supporting the monitoring and management of forest resources also on fine spatial scales.


2021 ◽  
Vol 13 (5) ◽  
pp. 834
Author(s):  
Glenn R. Moncrieff

Land cover change is the leading cause of global biodiversity decline. New satellite platforms allow for monitoring of habitats in increasingly fine detail, but most applications have been limited to forested ecosystems. I demonstrate the potential for detailed mapping and accurate dating of land cover change events in a highly biodiverse, Critically Endangered, shrubland ecosystem—the Renosterveld of South Africa. Using supervised classification of Sentinel 2 data, and subsequent manual verification with very high resolution imagery, I locate all conversion of Renosterveld to non-natural land cover between 2016 and 2020. Land cover change events are further assigned dates using high temporal frequency data from Planet labs. A total area of 478.6 hectares of Renosterveld loss was observed over this period, accounting for 0.72% of the remaining natural vegetation in the region. In total, 50% of change events were dated to within two weeks of their actual occurrence, and 87% to within two months. The Renosterveld loss identified here is almost entirely attributable to conversion of natural vegetation to cropland through ploughing. Change often preceded the planting and harvesting seasons of rainfed annual grains. These results show the potential for new satellite platforms to accurately map land cover change in non-forest ecosystems, and detect change within days of its occurrence. There is potential to use this and similar datasets to automate the process of change detection and monitor change continuously.


Sign in / Sign up

Export Citation Format

Share Document