water treatment residuals
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 62)

H-INDEX

33
(FIVE YEARS 8)

Geoderma ◽  
2022 ◽  
Vol 407 ◽  
pp. 115537
Author(s):  
Pablo Lacerda Ribeiro ◽  
Adilson Luís Bamberg ◽  
Ivan dos Santos Pereira ◽  
Alex Becker Monteiro ◽  
Mariana da Luz Potes ◽  
...  

Author(s):  
K. A. H. Arab ◽  
D. F. Thompson ◽  
I. W. Oliver

AbstractDrinking water treatment residuals (WTRs) are wastes generated when water is clarified using aluminium or iron salts. They are increasingly being considered as a resource with potential reuse value, particularly in relation to soil or water remediation. Adsorption–desorption capacity of Al-based (Al-WTR) and Fe-based (Fe-WTR) materials was investigated here for Pb and Zn, both separately and in combination, as a preliminary trial to assess their utility for immobilising contaminant metals in environmental settings. Maximum adsorption observed at the highest test solution concentrations imposed (400 mg/L) was similar for each WTR type and each metal; Al-WTRs sorbed Zn at 3579 mg/kg and Pb at 4025 mg/kg, while Fe-WTRs sorbed Zn and Pb at 3579 mg/kg and 3980 mg/kg, respectively. Equilibrium adsorption data were tested against Langmuir, Freundlich, and Temkin isotherm models, which indicated a substantial reserve capacity for further Pb sorption and that multiple sorption mechanisms were involved. Subsequent desorption tests with 0.001 M CaCl2 solution indicated that > 89.76% of sorbed metal remained sorbed. When in solution together, both metals were strongly sorbed by WTRs, but a slight preference for Pb was observed. The results indicate that WTRs would be very effective immobilising agents if placed in contaminated soil or if used to treat contaminated waters.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Donald R. Ryan ◽  
Brooke K. Mayer ◽  
Claire K. Baldus ◽  
Sean T. McBeath ◽  
Yin Wang ◽  
...  

2021 ◽  
Vol 2 ◽  
Author(s):  
Iris Zohar ◽  
Peleg Haruzi

The associations of elements upon a heterogeneous surface may control nutrients or pollutants sorption and release, having agricultural and environmental implications. This chemical behavior can be elucidated by spatial spectroscopy, followed by image analysis. The purpose of this paper is to present a working procedure for image analysis using the free program ImageJ that can be applied for dot maps of three or more elements produced by solid-state spectroscopy. Detailed step-by-step instructions lead to visual and quantitative information regarding elements associations. The working procedure was demonstrated for P, Al and Ca dot maps produced by scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) for surfaces of Al-based water treatment residuals (Al-WTRs), a by-product of drinking water pretreatment with alum coagulant. Al-WTR was reused to adsorb the macro-nutrient P from polluted soil leach and dairy wastewater (WW). Surficial P onto Al-WTR, SL-Al/O-WTR, and WW-Al/O-WTR (0.56, 0.93, and 2.15%, respectively) displayed sorption dynamics, mostly with Al and Ca. Quantification of the spatial proportions of individual elements and their associations indicated P-Al pool > P-Ca pool (45–24% and 17–7%, respectively). Upon introducing P-rich dairy wastewater, the behavior of P sorption by Al and Ca changed and became more clustered. A ternary phase of P-Al-Ca covered 38% of the area with signal, compared to 4.3 and 4.6% of the area in Al-WTR and SL-Al-WTR, where it was limited to particles edges only. Thus, the presented protocol may promote employing image analysis for geochemical applications, elucidating chemical behavior and affinities. Advantages and pitfalls are discussed.


Sign in / Sign up

Export Citation Format

Share Document