corticocortical connections
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 2)

H-INDEX

36
(FIVE YEARS 0)

2021 ◽  
Vol 15 ◽  
Author(s):  
Yunuen Moreno-López ◽  
Edmund R. Hollis

Restoring sensory circuit function after spinal cord injury (SCI) is essential for recovery of movement, yet current interventions predominantly target motor pathways. Integrated cortical sensorimotor networks, disrupted by SCI, are critical for perceiving, shaping, and executing movement. Corticocortical connections between primary sensory (S1) and motor (M1) cortices are critical loci of functional plasticity in response to learning and injury. Following SCI, in the motor cortex, corticocortical circuits undergo dynamic remodeling; however, it remains unknown how rehabilitation shapes the plasticity of S1-M1 networks or how these changes may impact recovery of movement.


2020 ◽  
Author(s):  
Edward T Urban ◽  
Mariko Nishibe ◽  
Scott Barbay ◽  
David J Guggenmos ◽  
Randolph J Nudo

AbstractThe rostral forelimb area (RFA) in the rat is considered to be a premotor cortical region based primarily on its efferent projections to the primary motor cortex. The purpose of the present study was to identify corticocortical connections of RFA, and to describe the relative strength of connections with other cortical areas. This will allow us to better understand the broader cortical network in which RFA participates, and thus, determine its function in motor behavior. In the present study, the RFA of adult male Long-Evans rats (n=6) was identified using intracortical microstimulation techniques and injected with the tract tracer, biotinylated dextran amine (BDA). In post-mortem tissue, location of BDA-labeled terminal boutons and neuronal somata were plotted and superimposed on cortical field boundaries. The results demonstrated that the RFA has dense to moderate reciprocal connections with primary motor cortex, the frontal cortex medial and lateral to RFA, primary somatosensory cortex (S1), and lateral somatosensory areas. Importantly, S1 connections were dense to moderate in dysgranular zones, but sparse to negligible in granular zones. Cortical connections of RFA in rat are strikingly similar to cortical connections of the ventral premotor cortex in non-human primates, suggesting that these areas share similar functions.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Ming-Chung Ho ◽  
Tsung-Ching Chen ◽  
Chin-Fei Huang ◽  
Cheng-Hsieh Yu ◽  
Jhih-Ming Chen ◽  
...  

The purpose of this study is to discriminate mild Alzheimer’s disease (AD) patients from the normal aging. The EEG coherence was applied to analyze the data from auditory oddball paradigm to discriminate the differences of corticocortical connections between mild AD patients and healthy subjects. The results showed that the lower values of coherence were performed in mild AD patients than in the normal aging subjects, especially in theta band. The implications and suggestions are shown in this study.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Robyn J. Laing ◽  
Jurate Lasiene ◽  
Jaime F. Olavarria

It is known that retinal input is necessary for the normal development of striate cortex and its corticocortical connections, but there is little information on the role that retinal input plays in the development of retinotopically organized connections between V1 and surrounding visual areas. In nearly all lateral extrastriate areas, the anatomical and physiological representation of the nasotemporal axis of the visual field mirrors the representation of this axis in V1. To determine whether the mediolateral topography of striate-extrastriate projections is preserved in neonatally enucleated rats, we analyzed the patterns of projections resulting from tracer injections placed at different sites along the mediolateral axis of V1. We found that the correlation between the distance from injection sites to the lateral border of V1 and the distance of the labeling patterns in area 18a was strong in controls and much weaker in enucleates. Data from pairs of injections in the same animal revealed that the separation of area 18a projection fields for a given separation of injection sites was more variable in enucleated than in control rats. Our analysis of single and double tracer injections suggests that neonatal bilateral enucleation weakens, but not completely abolishes, the mediolateral topography in area 18a.


Author(s):  
Riichiro Hira ◽  
Fuki Ohkubo ◽  
Yasuhiro R. Tanaka ◽  
Yoshito Masamizu ◽  
George J. Augustine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document