Journal of Medical Engineering
Latest Publications


TOTAL DOCUMENTS

55
(FIVE YEARS 0)

H-INDEX

13
(FIVE YEARS 0)

Published By Hindawi Limited

2314-5137, 2314-5129

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Vidya K. Nandikolla ◽  
Robin Bochen ◽  
Steven Meza ◽  
Allan Garcia

Researchers and clinicians are increasingly using plantar pressure and force measurement system to evaluate foot functions. This research evaluates the quality and reliability of a Tekscan HR mat to study the plantar pressures and forces acting during walking, running, jumping, and standing of healthy subjects. The following regions of the foot were investigated: heel, mid foot, metatarsophalangeal joint, hallux, and the toes. The arches of both feet of the three healthy subjects in the gait analysis were presented which addresses the balancing issues of the body during locomotion. The results indicated that the peaks at the big toe (79.4 ± 8.5 N/cm2, p = 0.0001) were the maximum compared to forefoot (40.3 ± 3.3 N/cm2, p = 0.001), to midfoot (7.5 ± 1.3 N/cm2, p = 0.001), and to heel (27.8 ± 3.9 N/cm2, p = 0.0002) for jump activity. The running activity demonstrated similar results as jump where the maximum peak pressures were absorbed at the big toe region. The heel region during running (86.3 ± 12.6 N/cm2, p = 0.001) showed three times the pressure peak compared to the jump land (27.8 ± 3.9 N/cm2, p = 0.0002) activity. The measurement system proved to be highly capable of detecting heel strike and toe-off moments.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Mobin Ibne Mokbul

Optical coherence tomography is a micrometer-scale imaging modality that permits label-free, cross-sectional imaging of biological tissue microstructure using tissue backscattering properties. After its invention in the 1990s, OCT is now being widely used in several branches of neuroscience as well as other fields of biomedical science. This review study reports an overview of OCT’s applications in several branches or subbranches of neuroscience such as neuroimaging, neurology, neurosurgery, neuropathology, and neuroembryology. This study has briefly summarized the recent applications of OCT in neuroscience research, including a comparison, and provides a discussion of the remaining challenges and opportunities in addition to future directions. The chief aim of the review study is to draw the attention of a broad neuroscience community in order to maximize the applications of OCT in other branches of neuroscience too, and the study may also serve as a benchmark for future OCT-based neuroscience research. Despite some limitations, OCT proves to be a useful imaging tool in both basic and clinical neuroscience research.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Abdellah Ait Moussa ◽  
Rohan Yadav

The longevity of hip prostheses is contingent on the stability of the implant within the cavity of the femur bone. The cemented fixation was mostly adopted owing to offering the immediate stability from cement-stem and cement-bone bonding interfaces after implant surgery. Yet cement damage and stress shielding of the bone were proven to adversely affect the lifelong stability of the implant, especially among younger subjects who tend to have an active lifestyle. The geometry and material distribution of the implant can be optimized more efficiently with a three-dimensional realistic design of a functionally graded material (FGM). We report an efficient numerical technique for achieving this objective, for maximum performance stress shielding and the rate of early accumulation of cement damage were concurrently minimized. Results indicated less stress shielding and similar cement damage rates with a 2D-FGM implant compared to 1D-FGM and Titanium alloy implants.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Benedikt Lorch ◽  
Ghislain Vaillant ◽  
Christian Baumgartner ◽  
Wenjia Bai ◽  
Daniel Rueckert ◽  
...  

The acquisition of a Magnetic Resonance (MR) scan usually takes longer than subjects can remain still. Movement of the subject such as bulk patient motion or respiratory motion degrades the image quality and its diagnostic value by producing image artefacts like ghosting, blurring, and smearing. This work focuses on the effect of motion on the reconstructed slices and the detection of motion artefacts in the reconstruction by using a supervised learning approach based on random decision forests. Both the effects of bulk patient motion occurring at various time points in the acquisition on head scans and the effects of respiratory motion on cardiac scans are studied. Evaluation is performed on synthetic images where motion artefacts have been introduced by altering the k-space data according to a motion trajectory, using the three common k-space sampling patterns: Cartesian, radial, and spiral. The results suggest that a machine learning approach is well capable of learning the characteristics of motion artefacts and subsequently detecting motion artefacts with a confidence that depends on the sampling pattern.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Talip Celik ◽  
Ibrahim Mutlu ◽  
Arif Ozkan ◽  
Yasin Kisioglu

Background. In this study, the cut-out risk of Dynamic Hip Screw (DHS) was investigated in nine different positions of the lag screw for two fracture types by using Finite Element Analysis (FEA). Methods. Two types of fractures (31-A1.1 and A2.1 in AO classification) were generated in the femur model obtained from Computerized Tomography images. The DHS model was placed into the fractured femur model in nine different positions. Tip-Apex Distances were measured using SolidWorks. In FEA, the force applied to the femoral head was determined according to the maximum value being observed during walking. Results. The highest volume percentage exceeding the yield strength of trabecular bone was obtained in posterior-inferior region in both fracture types. The best placement region for the lag screw was found in the middle of both fracture types. There are compatible results between Tip-Apex Distances and the cut-out risk except for posterior-superior and superior region of 31-A2.1 fracture type. Conclusion. The position of the lag screw affects the risk of cut-out significantly. Also, Tip-Apex Distance is a good predictor of the cut-out risk. All in all, we can supposedly say that the density distribution of the trabecular bone is a more efficient factor compared to the positions of lag screw in the cut-out risk.


2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
S. Rangsungnoen ◽  
P. Chanbenjapipu ◽  
N. Mathuradavong ◽  
K. Suwanprasert

Sudden death caused by abnormal QTc and atrial fibrillation (AF) has been reported in stroke. Heart rate variability (HRV) is reduced with missing beats of RRI during arrhythmic episode and abnormal QTc variation during acute stroke. In this study, we develop a hybrid signal processing by Pan Tompkins QRS detection and Kalman filter estimator for meaningful missing beats and searching AF with prolonged QTc. We use this hybrid model to investigate RRIs of Lead II ECG in thirty acute stroke patients with long QTc and AF (LQTc-AF) and normal QTc without AF (NQTc-nonAF) and then assess them by HRV. In LQTc-AF Kalman, higher mean heart rate with lower mean RRIs compared to NQTc-nonAF Kalman was characterized. LQTc-AF Kalman showed significant increase in SDNN, HF, SD2, SD2/SD1, and sample entropy. SDNN and HF associated with high RMSSD, pNN50, and SD1 reflect predominant parasympathetic drive for sympathovagal balance in LQTc-AF Kalman. Greater SD2, SD2/SD1, and sample entropy indicate more scatter of Poincaré plot. Compared with conventional Labchart, fractal scaling exponent of α1 (DFA) is higher in LQTc-AF Kalman. Remarkable complexity with parasympathetic drive in LQTc-AF Kalman suggests an influence of missing beats during stroke.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Avvaru Srinivasulu ◽  
N. Sriraam

External cardiac loop recorder (ELR) is a kind of ECG monitoring system that records cardiac activities of a subject continuously for a long time. When the heart palpitations are not the frequent and nonspecific character, it is difficult to diagnose the disease. In such a case, ELR is used for long-term monitoring of heart signal of the patient. But the cost of ELR is very high. Therefore, it is not prominently available in developing countries like India. Since the design of ELR includes the ECG electrodes, instrumentation amplifier, analog to digital converter, and signal processing unit, a comparative review of each part of the ELR is presented in this paper in order to design a cost effective, low power, and compact kind of ELR. This review will also give different choices available for selecting and designing each part of the ELR system. Finally, the review will suggest the better choice for designing a cost effective external cardiac loop recorder that helps to make it available even for rural people in India.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Anthony Vo ◽  
Marc Doumit ◽  
Gloria Rockwell

Purpose. Injecting triamcinolone acetonide (TA) into a keloid is physically challenging due to the density of keloids. The purpose was to investigate the effects of various syringe and needle combinations on the injection force to determine the most ergonomic combination. Materials and Methods. A load cell was used to generate and measure the injection force. Phase 1: the injection force of 5 common syringes was measured by injecting water into air. The syringe that required the lowest injection force was evaluated with various needle gauges (25, 27, and 30 G) and lengths (16, 25, and 38 mm) by injecting TA (40 mg/mL) into air. The needle-syringe combination with the lowest injection force (CLIF) was deemed the most ergonomic combination. Phase 2: comparisons between the CLIF and a standard combination (SC) were performed by injecting TA into air and tap water into a keloid specimen. Intraclass Correlation Coefficient (ICC) and independent t-test were used. Results. Increasing the syringe caliber, injection speed, and needle gauge and length significantly increased the injection force (p value < 0.001). The SC required a maximum force of 40.0 N to inject water into keloid, compared to 25.0 N for the CLIF. Injecting TA into keloid using the SC would require an injection force that was 103.5% of the maximum force female thumbs could exert compared to 64.8% for the CLIF. ICC values were greater than 0.4. Conclusions. The 1 mL polycarbonate syringe with a 25 G, 16 mm needle (CLIF) was the most ergonomic combination. The SC required a substantial injection force, which may represent a physical challenge for female thumbs.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Somen Baidya ◽  
Mohammad A. Ahad

Electrical Impedance Myography (EIM) is a noninvasive neurophysiologic technique to diagnose muscle health. Besides muscle properties, the EIM measurements vary significantly with the change of some other anatomic and nonanatomic factors such as skin fat thickness, shape and thickness of muscle, and electrode size and spacing due to its noninvasive nature of measurement. In this study, genetic algorithm was applied along with finite element model of EIM as an optimization tool in order to figure out an optimized EIM electrode setup, which is less affected by these factors, specifically muscle thickness variation, but does not compromise EIM’s ability to detect muscle diseases. The results obtained suggest that a particular arrangement of electrodes and minimization of electrode surface area to its practical limit can overcome the effect of undesired factors on EIM parameters to a larger extent.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Ioannis Pachoulakis ◽  
Nikolaos Xilourgos ◽  
Nikolaos Papadopoulos ◽  
Anastasia Analyti

We report on a Kinect-based, augmented reality, real-time physiotherapy platform tailored to Parkinson’s disease (PD) patients. The platform employs a Kinect sensor to extract real-time 3D skeletal data (joint information) from a patient facing the sensor (at 30 frames per second). In addition, a small collection of exercises practiced in traditional physiotherapy for PD patients has been implemented in the Unity 3D game engine. Each exercise employs linear or circular movement patterns and poses very light-weight processing demands on real-time computations. During an exercise, trainer instruction demonstrates correct execution and Kinect-provided 3D joint data are fed to the game engine and compared to exercise-specific control routines to assess proper posture and body control in real time. When an exercise is complete, performance metrics appropriate for that exercise are computed and displayed on screen to enable the attending physiotherapist to fine-tune the exercise to the abilities/needs of an individual patient as well as to provide performance feedback to the patient. The platform can operate in a physiotherapist’s office and, following appropriate validation, in a home environment. Finally, exercises can be parameterized meaningfully, depending on the intended purpose (motor assessment versus plain exercise at home).


Sign in / Sign up

Export Citation Format

Share Document