interference constraints
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 22)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Shibiao Zhao

In this thesis, we develop an subcarrier transmission suboptimal power allocation algorithm and an underlay subcarrier transmission optimal power allocation algorithm for the orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) systems with different statistical interference constraints imposed by different primary users (PUs). Given the fact that the interference constraints are met in a statistical manner, the CR transmitter does not require the instantaneous channel quality feed-back from the PU receivers. First an alternative subcarrier transmission suboptimal algorithm with reduced complexity has been proposed and the performance has been investigated. Presented numerical results show that with our proposed suboptimal power allocation algorithm CR user can achieve 10 percent higher transmission capacity for given statistical interference constraints and a given power budget compared to the traditional suboptimal power allocation algorithms, uniform and water-filling power allocation algorithms. The proposed suboptimal algorithm outperforms traditional suboptimal algorithm, water-filling algorithm and uniform power loading algorithm. Second,We introduce an underlay subcarrier transmission optimal power allocation algorithms which allows the secondary users use the bandwidth used by Pus. And at the same time we consider the individual peak power constraint as the forth constraint added to the objective function which is the transmission capacity rate of the secondary users.Third, we propose suboptimal algorithm using GWF which has less complexity level than traditional water-filling algorithm instead of conventional water-filling algorithm in calculating the assigned power while considering the satisfaction of the total power constraint. The proposed suboptimal algorithm gives an option of using a low complexity power allocation algorithm where complexity is an issue.


2021 ◽  
Author(s):  
Shibiao Zhao

In this thesis, we develop an subcarrier transmission suboptimal power allocation algorithm and an underlay subcarrier transmission optimal power allocation algorithm for the orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) systems with different statistical interference constraints imposed by different primary users (PUs). Given the fact that the interference constraints are met in a statistical manner, the CR transmitter does not require the instantaneous channel quality feed-back from the PU receivers. First an alternative subcarrier transmission suboptimal algorithm with reduced complexity has been proposed and the performance has been investigated. Presented numerical results show that with our proposed suboptimal power allocation algorithm CR user can achieve 10 percent higher transmission capacity for given statistical interference constraints and a given power budget compared to the traditional suboptimal power allocation algorithms, uniform and water-filling power allocation algorithms. The proposed suboptimal algorithm outperforms traditional suboptimal algorithm, water-filling algorithm and uniform power loading algorithm. Second,We introduce an underlay subcarrier transmission optimal power allocation algorithms which allows the secondary users use the bandwidth used by Pus. And at the same time we consider the individual peak power constraint as the forth constraint added to the objective function which is the transmission capacity rate of the secondary users.Third, we propose suboptimal algorithm using GWF which has less complexity level than traditional water-filling algorithm instead of conventional water-filling algorithm in calculating the assigned power while considering the satisfaction of the total power constraint. The proposed suboptimal algorithm gives an option of using a low complexity power allocation algorithm where complexity is an issue.


2021 ◽  
Author(s):  
Md Sipon Miah ◽  
Mohammad Amzad Hossain ◽  
Kazi Mowdud Ahmed ◽  
Md. Mahbubur Rahman ◽  
Ali Calhan

Abstract Spectrum sensing plays a very important role in Cognitive Radio based Internet of Things (CR-IoT) networks for utilization of the licensed spectrum accurately. However, the performance of the conventional Energy Detector (ED) method is compromised in a noise-uncertain environment owing to interference constraints, i.e. the CR-IoT user interference with the licensed Primary User (PU) on the same licensed band. To overcome this drawback, we proposed an energy efficient Cooperative Spectrum Sensing (CSS) for a CR-IoT network with interference constraints using a novel ED method. In this method, each CR-IoT user is capable of spectrum sensing that makes both the local decision and the weight factor based on the sequential approach; we calculate the weight factor against each CR-IoT user based on the Kullback Leibler Divergence award score. After the local decision and the weight factor are made, each CR-IoT user transmits its measured both the local decisions, and the weight factor to a Fusion Center (FC), which is made a final decision about the PU activities based on the hard fusion rule. The simulation results demonstrates that the proposed ED method obtains an improved detection performance, an enhanced sum rate, a spectral efficiency, an energy efficiency, and a lower global error probability when compared to other conventional ED methods under time varying environments.


2020 ◽  
Vol 13 (5) ◽  
pp. 987-998
Author(s):  
Khyati Chopra ◽  
Ranjan Bose ◽  
Anupam Joshi

Background:: Based on the idea of cooperative communication, recently a lot of attention has been drawn to cooperative spectrum access for the secure information transmission in a Cognitive Radio Network (CRN). Security is one of the most important aspects of these networks, as due to their open and dynamic nature, they are extremely vulnerable to malicious behavior. Cooperative cognitive radio has emerged as a dynamic spectrum access technique, where an unlicensed (secondary) user is allowed to simultaneously access the licensed channels dedicated to a Primary User (PU), as long as the Quality of Service (QoS) of primary communication is not affected. Method:: This paper investigates the secrecy outage performance of threshold-based cognitive decode-andforward relay network, with interference constraints from primary licensed user. Threshold-based relaying is considered where; the source message is successfully decoded by the relay, only if the received SNR satisfies the particular threshold. Outage probability expressions have been derived for the worst-case scenario, where only the eavesdropper can achieve the advantage of diversity. The Selection Combining (SC) diversity scheme is employed only at the secondary eavesdropper. Results:: The system secrecy performance is better for SC diversity scheme at the eavesdropper than Maximal Ratio Combining (MRC) diversity scheme, as MRC has better diversity performance than SC. We have shown that the improvement in desired secrecy rate, predetermined threshold, eavesdropper channel quality and interference constraints affect the secrecy performance of the cognitive radio system. The outage probability decreases accordingly with an increase in the maximum tolerable interference level at primary destination. The outage probability of Optimal relay Selection (OS) scheme is derived for a multi-relay system, when either the Instantaneous Channel State Information (ICSI) or the Statistical Channel State Information (SCSI) is available. We have shown that the secrecy performance of the OS with ICSI of the system is better than with SCSI. Also, the OS improves the performance of the multi-relay system, when the number of relays is increased. Conclusion:: The secrecy outage probability of threshold-based DF underlay cognitive relay network is evaluated. Both interference and maximum transmit power constraints are considered at secondary source and secondary relay. Also, the relay can successfully decode the message, only if it meets the pre-defined threshold. We have investigated the performance of MRC and SC diversity schemes at the secondary eavesdropper and have shown that the system secrecy performance is better for SC than MRC, as MRC has better diversity performance than SC. We have shown that the system secrecy performance is significantly affected by the required secrecy rate, pre-defined threshold, interference constraints and choice of diversity scheme (MRC/SC) at the eavesdropper. The outage probability of OS scheme is derived for a multi-relay system, when either the ICSI or the SCSI is available. We have shown that the secrecy performance of the OS with ICSI of the system is better than with SCSI. Also, the OS improves the performance of the multi-relay system, when the number of relays is increased.


Sign in / Sign up

Export Citation Format

Share Document